DrawingProcess
드프 DrawingProcess
DrawingProcess
전체 방문자
오늘
어제
«   2025/07   »
일 월 화 수 목 금 토
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
  • 분류 전체보기 (969)
    • Profile & Branding (25)
      • Career (18)
    • IT Trends (254)
      • Conference, Faire (Experien.. (31)
      • News (187)
      • Youtube (19)
      • TED (8)
      • Web Page (2)
      • IT: Etc... (6)
    • Contents (98)
      • Book (67)
      • Lecture (31)
    • Project Process (94)
      • Ideation (0)
      • Study Report (34)
      • Challenge & Award (22)
      • 1Day1Process (5)
      • Making (5)
      • KRC-FTC (Team TC(5031, 5048.. (10)
      • GCP (GlobalCitizenProject) (15)
    • Study: ComputerScience(CS) (72)
      • CS: Basic (9)
      • CS: Database(SQL) (5)
      • CS: Network (14)
      • CS: OperatingSystem (3)
      • CS: Linux (39)
      • CS: Etc... (2)
    • Study: Software(SW) (95)
      • SW: Language (29)
      • SW: Algorithms (1)
      • SW: DataStructure & DesignP.. (1)
      • SW: Opensource (15)
      • SW: Error Bug Fix (43)
      • SW: Etc... (6)
    • Study: Artificial Intellige.. (149)
      • AI: Research (1)
      • AI: 2D Vision(Det, Seg, Tra.. (35)
      • AI: 3D Vision (70)
      • AI: MultiModal (3)
      • AI: SLAM (0)
      • AI: Light Weight(LW) (3)
      • AI: Data Pipeline (7)
      • AI: Machine Learning(ML) (1)
    • Study: Robotics(Robot) (33)
      • Robot: ROS(Robot Operating .. (9)
      • Robot: Positioning (8)
      • Robot: Planning & Control (7)
    • Study: DeveloperTools(DevTo.. (83)
      • DevTool: Git (12)
      • DevTool: CMake (13)
      • DevTool: NoSQL(Elastic, Mon.. (25)
      • DevTool: Container (17)
      • DevTool: IDE (11)
      • DevTool: CloudComputing (4)
    • 인생을 살면서 (65) N
      • 나의 취미들 (7)
      • 나의 생각들 (42)
      • 여행을 떠나자~ (10)
      • 분기별 회고 (6) N

개발자 명언

“ 매주 목요일마다 당신이 항상 하던대로 신발끈을 묶으면 신발이 폭발한다고 생각해보라.
컴퓨터를 사용할 때는 이런 일이 항상 일어나는데도 아무도 불평할 생각을 안 한다. ”

- Jef Raskin

맥의 아버지 - 애플컴퓨터의 매킨토시 프로젝트를 주도

인기 글

최근 글

최근 댓글

티스토리

hELLO · Designed By 정상우.
DrawingProcess

드프 DrawingProcess

[AI] back-propagation supplementary explanation
Study: Artificial Intelligence(AI)

[AI] back-propagation supplementary explanation

2020. 9. 1. 02:36
반응형

0. Overall Explanation: Calculate the hidden neuron value using weights from the input, and calculate the output of network using those values. Obtain the error value of the obtained output and target values and update the weight value to minimize the error value through backpropagation.

base structure

1. Each neuron is composed of two units. First unit adds products of weights coefficients and input signals. The second unit realise nonlinear function, called neuron activation function. Signal e is adder output signal, and y = f(e) is output signal of nonlinear element. Signal y is also output signal of neuron.

2. Symbols W(Xm)n represent weights of connections between network input Xm and neuron n in input layer. Symbols Yn represents output signal of neuron n.

3. The training data set consists of input signals (x1 and x2 ) assigned with corresponding target (desired output) z. Error signal is difference the output signal of the network y and the desired output value z (the target).

4. The idea is to propagate error signal (computed in single teaching step) back to all neurons, which output signals were input for discussed neuron. The weights' coefficients wmn used to propagate errors back are equal to this used during computing output value.

 

 

5. the weights coefficients(learning rate) of each neuron input node may be modified. In formulas(공식) below df(e)/de represents derivative(미분) of neuron activation function

# 참고 : http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

 

Backpropagation

The project describes teaching process of multi-layer neural network employing backpropagation algorithm. To illustrate this process the three layer neural network with two inputs and one output,which is shown in the picture below, is used: Each neuron is

galaxy.agh.edu.pl

# 참고 : https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

 

A Step by Step Backpropagation Example

Background Backpropagation is a common method for training a neural network. There is no shortage of papers online that attempt to explain how backpropagation works, but few that include an example…

mattmazur.com

 

반응형
저작자표시 비영리 변경금지 (새창열림)

'Study: Artificial Intelligence(AI)' 카테고리의 다른 글

[논문리뷰] A Survey on Video Summarization Techniques (IJCA 2015)  (0) 2021.05.25
[AI] Sequential, Functional, Model sub-classing using Keras and TensorFlow 2.0  (0) 2020.09.08
[Vision] 용어정리(epoch, batch size, )  (0) 2020.09.01
[논문리뷰] colorBased Hands Tracking System for sign language recognition ( IEEE 1998 )  (0) 2020.02.04
[논문리뷰] Recognition of Arabic Sign Language using Recurrent Neural Networks ( ICADIWT 2008 )  (0) 2020.02.04
    'Study: Artificial Intelligence(AI)' 카테고리의 다른 글
    • [논문리뷰] A Survey on Video Summarization Techniques (IJCA 2015)
    • [AI] Sequential, Functional, Model sub-classing using Keras and TensorFlow 2.0
    • [Vision] 용어정리(epoch, batch size, )
    • [논문리뷰] colorBased Hands Tracking System for sign language recognition ( IEEE 1998 )
    DrawingProcess
    DrawingProcess
    과정을 그리자!

    티스토리툴바