๐ก ๋ณธ ๋ฌธ์๋ 'Autonomous Driving Open Dataset: nuScenes Dataset'์ ๋ํด ์ ๋ฆฌํด๋์ ๊ธ์ ๋๋ค.
์์จ์ฃผํ ์ฐจ๋์ ์ผ์ ๋ฐ์ดํฐ์ ์ค ํ๋์ธ nuScenes Dataset์ ๋ํด ์ ๋ฆฌํ์์ผ๋ ์ฐธ๊ณ ํ์๊ธฐ ๋ฐ๋๋๋ค.
nuScenes Dataset
1) Sensor ๊ตฌ์ฑ
camera 6๊ฐ + lidar 1๊ฐ + radar 5๊ฐ
nuScenes dataset์ 2019๋ ์ ๊ณต๊ฐ๋ ์คํ๋ฐ์ดํฐ๋ก detection, tracking, prediction & localization task์ ์ง์ํ๋ multi modal dataset์ ๋๋ค. ๋จ์ํ image๋ง ์ ๊ณตํ๋ ๊ฒ์ด ์๋ camera๋ก ์์งํ image, Lidar๋ก ์์งํ point cloud, radar๋ก ์์งํ point cloud ๋ฑ์ด ์ ๊ณต๋ฉ๋๋ค.
dataset์์๋ 140๋ง ๊ฐ์ ์นด๋ฉ๋ผ ์ด๋ฏธ์ง, 39๋ง ๊ฐ์ ๋ผ์ด๋ค ์ ๋ณด, 140๋ง ๊ฐ์ ๋ ์ด๋ ์ ๋ณด, 140๋ง ๊ฐ์ object bounding box๊ฐ ํฌํจ๋์ด ์์ต๋๋ค. ์ ์ฒด์ ์ธ ๋ฐ์ดํฐ์ ๊ตฌ์ฑ์ ๋ค์๊ณผ ๊ฐ์ต๋๋ค.
2) A Introduction to nuScenes
In this part of the tutorial, let us go through a top-down introduction of our database. Our dataset comprises of elemental building blocks that are the following:
- log - Log information from which the data was extracted.
- scene - 20 second snippet of a car's journey.
- sample - An annotated snapshot of a scene at a particular timestamp.
- sample_data - Data collected from a particular sensor.
- ego_pose - Ego vehicle poses at a particular timestamp.
- sensor - A specific sensor type.
- calibrated sensor - Definition of a particular sensor as calibrated on a particular vehicle.
- instance - Enumeration of all object instance we observed.
- category - Taxonomy of object categories (e.g. vehicle, human).
- attribute - Property of an instance that can change while the category remains the same.
- visibility - Fraction of pixels visible in all the images collected from 6 different cameras.
- sample_annotation - An annotated instance of an object within our interest.
- map - Map data that is stored as binary semantic masks from a top-down view.
The database schema is visualized below. For more information see the nuScenes schema page.
3) nuScenes Schema
nuScenes์์ detection์์ ์ฌ์ฉํ๋ class๋ ์ด 10๊ฐ์ง๋ก Car, Bus, Bicycle, Barrier, Construction_vehicle, Motorcycle, Pedestrian, Traffic_cone, Trailer, Truck ์ ๋๋ค.
annotation์ ํ ๊ธฐ์ค์ ์ดํด๋ณด๋ฉด
- ๋ฌผ์ฒด๋ ์์น์ ๋ชจ์์ ์ ์ ์๋๋ก ์ ์ด๋ LiDAR๋ Radar point 1๊ฐ๊ฐ ํฌํจ๋์ด์ผ ํฉ๋๋ค.
- ๋ฌผ์ฒด๋ฅผ ๋ํ๋ด๋ ์ง์ก๋ฉด์ฒด๋ ๋งค์ฐ tightํด์ผํฉ๋๋ค.
- ๋ฌผ์ฒด์ ๋๊ณผ ๋์ ๋ชจ๋ ํฌํจ๋์ด์ผ ํฉ๋๋ค.
→ ๋ฌผ์ฒด๊ฐ ์ด์ด์ ธ์๋ค๋ฉด ๋๊ธฐ์ง ์๊ณ ํ๋์ ์ ์ฒด๋ฅผ ํฌํจํด์ผ ํฉ๋๋ค. - ๋ณดํ์๊ฐ ์ด๋ฐํ๋ ๋ฌผ๊ฑด๋ ํฌํจํฉ๋๋ค.
- ๊ฐํน ์์ง์ด์ง ์๋ ๋ฌผ์ฒด๊ฐ ์์ง์ด๋ ๊ฒฝ์ฐ ์๋ฌ๋ฅผ ๋ฐฉ์งํ๊ธฐ ์ํด ๋ณ๋์ bbox๋ฅผ ๋ง๋ญ๋๋ค.
- LiDAR๋ Radar์ ์ ์ฐํ์ง ์๋ ๋ฌผ์ฒด๋ ์นด๋ฉ๋ผ ์ด๋ฏธ์ง๋ฅผ ํตํด ํฌ๊ธฐ๋ฅผ ํ๋ณํฉ๋๋ค.
- ๋ชจ๋ ์นด๋ฉ๋ผ๊ฐ ๋ณผ ์ ์๋ ๋ฌผ์ฒด๋ ํน๋ณํ ์์ฑ์ ๋ถ์ฌํฉ๋๋ค.
์์ธํ data์ ๋ด์ฉ์ nuScenes ๋ ผ๋ฌธ์ด๋ ํํ์ด์ง๋ฅผ ๊ฐ๋ฉด ํ์ธํ ์ ์๊ณ ๋ฐ์ดํฐ๋ฅผ ํ์ธํด๋ณด๊ณ ์ถ๋ค๋ฉด ์๋์ tutorial์ ์งํํด๋ณด์๊ธธ ๋ฐ๋๋๋ค.
- [Official] nuScenes Dataset tutorial: https://www.nuscenes.org/tutorials/nuscenes_tutorial.html
nuScenes Download Scripts
#!/usr/bin/bash
mkdir done_unzipping
# The download links may change over time.
wget https://d36yt3mvayqw5m.cloudfront.net/public/v1.0/v1.0-trainval_meta.tgz
wget https://motional-nuscenes.s3.amazonaws.com/public/v1.0/v1.0-trainval01_blobs.tgz
wget https://motional-nuscenes.s3.amazonaws.com/public/v1.0/v1.0-trainval02_blobs.tgz
wget https://d36yt3mvayqw5m.cloudfront.net/public/v1.0/v1.0-trainval03_blobs.tgz
wget https://motional-nuscenes.s3.amazonaws.com/public/v1.0/v1.0-trainval04_blobs.tgz
wget https://d36yt3mvayqw5m.cloudfront.net/public/v1.0/v1.0-trainval05_blobs.tgz
wget https://d36yt3mvayqw5m.cloudfront.net/public/v1.0/v1.0-trainval06_blobs.tgz
wget https://d36yt3mvayqw5m.cloudfront.net/public/v1.0/v1.0-trainval07_blobs.tgz
wget https://motional-nuscenes.s3.amazonaws.com/public/v1.0/v1.0-trainval08_blobs.tgz
wget https://motional-nuscenes.s3.amazonaws.com/public/v1.0/v1.0-trainval09_blobs.tgz
wget https://motional-nuscenes.s3.amazonaws.com/public/v1.0/v1.0-trainval10_blobs.tgz
wget https://motional-nuscenes.s3.amazonaws.com/public/v1.0/v1.0-test_blobs.tgz
wget https://d36yt3mvayqw5m.cloudfront.net/public/v1.0/v1.0-trainval_meta.tgz
tar -xzvf v1.0-trainval_meta.tgz && mv v1.0-trainval_meta.tgz ./done_unzipping/
tar -xzvf v1.0-trainval01_blobs.tgz && mv v1.0-trainval01_blobs.tgz ./done_unzipping/
tar -xzvf v1.0-trainval02_blobs.tgz && mv v1.0-trainval02_blobs.tgz ./done_unzipping/
tar -xzvf v1.0-trainval03_blobs.tgz && mv v1.0-trainval03_blobs.tgz ./done_unzipping/
tar -xzvf v1.0-trainval04_blobs.tgz && mv v1.0-trainval04_blobs.tgz ./done_unzipping/
tar -xzvf v1.0-trainval05_blobs.tgz && mv v1.0-trainval05_blobs.tgz ./done_unzipping/
tar -xzvf v1.0-trainval06_blobs.tgz && mv v1.0-trainval06_blobs.tgz ./done_unzipping/
tar -xzvf v1.0-trainval07_blobs.tgz && mv v1.0-trainval07_blobs.tgz ./done_unzipping/
tar -xzvf v1.0-trainval08_blobs.tgz && mv v1.0-trainval08_blobs.tgz ./done_unzipping/
tar -xzvf v1.0-trainval09_blobs.tgz && mv v1.0-trainval09_blobs.tgz ./done_unzipping/
tar -xzvf v1.0-trainval10_blobs.tgz && mv v1.0-trainval10_blobs.tgz ./done_unzipping/
tar -xzvf v1.0-test_blobs.tgz && mv v1.0-test_blobs.tgz ./done_unzipping/
tar -xzvf v1.0-trainval_meta.tgz && mv v1.0-trainval_meta.tgz ./done_unzipping/
nuScenes Related Source
- [colab] nutonomy/nuscenes-devkit: https://colab.research.google.com/github/nutonomy/nuscenes-devkit/
- [Github] nutonomy/nuscenes-devkit: https://github.com/nutonomy/nuscenes-devkit
- [Github] chiyukunpeng/nuscenes_viz: https://github.com/chiyukunpeng/nuscenes_viz
- [Github] clynamen/nuscenes2bag: https://github.com/clynamen/nuscenes2bag
nuScenes Other Dataset
1. nuImages
nuImages is a large-scale autonomous driving dataset with image-level 2d annotations. It features:
- 93k video clips of 6s each (150h of driving)
- 93k annotated and 1.1M un-annotated images
- Two diverse cities: Boston and Singapore
- The same proven sensor suite as in nuScenes
- Images mined for diversity
- 800k annotated foreground objects with 2d bounding boxes and instance masks
- 100k 2d semantic segmentation masks for background classes
- Attributes such as rider, pose, activity, emergency lights and flying
- Free to use for non-commercial use
- For a commercial license contact nuScenes@motional.com
2. nuPlan
nuPlan is the world's first large-scale planning benchmark for autonomous driving. It features:
- The world's first ML planning benchmark
- 1200h of driving data from 4 cities (Boston, Pittsburgh, Las Vegas and Singapore)
- Sensor data released for 120h (5x LIDAR, 8x camera, IMU, GPS)
- Left versus right hand traffic
- Detailed map information
- 5B 3D bounding boxes auto labeled for 7 classes
- Open and closed loop planning simulation
- 30+ mined scenario types (e.g. lane change, unprotected turn, jaywalker)
- 20+ open and closed loop planning simulation and metrics to score planners (traffic rule violation, human driving similarity, vehicle dynamic, goal achievement)
- Traffic light statuses inferred from agent movement
- Baselines and framework to train reactive agents and ML based planners
- Upcoming challenges around planning and smart agents in 2022
- Free to use for non-commercial use
- For a commercial license contact nuPlan@motional.com
3. nuScenes Occupancy
- [Paperwithcode] Prediction Of Occupancy Grid Maps on Occ3D-nuScenes: https://paperswithcode.com/sota/prediction-of-occupancy-grid-maps-on-occ3d
- [eval.ai] 3D Occupancy Prediction Challenge: https://eval.ai/web/challenges/challenge-page/2045/overview
- [archive] NuScenes Occupancy Grids Dataset: https://archive.org/details/nuscenes-occupancy-grids-dataset
- [Git] Occupancy Dataset for nuScenes: https://github.com/FANG-MING/occupancy-for-nuscenes
- [Git] CVPR2023-3D-Occupancy-Prediction
: https://github.com/CVPR2023-3D-Occupancy-Prediction/CVPR2023-3D-Occupancy-Prediction - [Git] huang-yh/selfocc: https://github.com/huang-yh/selfocc
- [Paper] Predicting Future Occupancy Grids in Dynamic Environment with Spatio-Temporal Learning: https://arxiv.org/pdf/2205.03212v1.pdf
- [Git] OccupancyGrid-Predictions: https://github.com/ksm26/OccupancyGrid-Predictions
4. nuReality
์ฐธ๊ณ
- [Blog] 15 Best Open-Source Autonomous Driving Datasets: https://medium.com/analytics-vidhya/15-best-open-source-autonomous-driving-datasets-34324676c8d7
- [Official] nuScenes Dataset Overview: https://www.nuscenes.org/nuscenes#overview
- [Official] nuScenes Dataset Downloads: https://www.nuscenes.org/nuscenes#download