DrawingProcess
๋“œํ”„ DrawingProcess
DrawingProcess
์ „์ฒด ๋ฐฉ๋ฌธ์ž
์˜ค๋Š˜
์–ด์ œ
ยซ   2025/06   ยป
์ผ ์›” ํ™” ์ˆ˜ ๋ชฉ ๊ธˆ ํ† 
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30
  • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ (964)
    • Profile & Branding (22)
      • Career (15)
    • IT Trends (254)
      • Conference, Faire (Experien.. (31)
      • News (187)
      • Youtube (19)
      • TED (8)
      • Web Page (2)
      • IT: Etc... (6)
    • Contents (97)
      • Book (66)
      • Lecture (31)
    • Project Process (94)
      • Ideation (0)
      • Study Report (34)
      • Challenge & Award (22)
      • 1Day1Process (5)
      • Making (5)
      • KRC-FTC (Team TC(5031, 5048.. (10)
      • GCP (GlobalCitizenProject) (15)
    • Study: ComputerScience(CS) (72)
      • CS: Basic (9)
      • CS: Database(SQL) (5)
      • CS: Network (14)
      • CS: OperatingSystem (3)
      • CS: Linux (39)
      • CS: Etc... (2)
    • Study: Software(SW) (95)
      • SW: Language (29)
      • SW: Algorithms (1)
      • SW: DataStructure & DesignP.. (1)
      • SW: Opensource (15)
      • SW: Error Bug Fix (43)
      • SW: Etc... (6)
    • Study: Artificial Intellige.. (149)
      • AI: Research (1)
      • AI: 2D Vision(Det, Seg, Tra.. (35)
      • AI: 3D Vision (70)
      • AI: MultiModal (3)
      • AI: SLAM (0)
      • AI: Light Weight(LW) (3)
      • AI: Data Pipeline (7)
      • AI: Machine Learning(ML) (1)
    • Study: Robotics(Robot) (33)
      • Robot: ROS(Robot Operating .. (9)
      • Robot: Positioning (8)
      • Robot: Planning & Control (7)
    • Study: DeveloperTools(DevTo.. (83)
      • DevTool: Git (12)
      • DevTool: CMake (13)
      • DevTool: NoSQL(Elastic, Mon.. (25)
      • DevTool: Container (17)
      • DevTool: IDE (11)
      • DevTool: CloudComputing (4)
    • ์ธ์ƒ์„ ์‚ด๋ฉด์„œ (64)
      • ๋‚˜์˜ ์ทจ๋ฏธ๋“ค (7)
      • ๋‚˜์˜ ์ƒ๊ฐ๋“ค (42)
      • ์—ฌํ–‰์„ ๋– ๋‚˜์ž~ (10)
      • ๋ถ„๊ธฐ๋ณ„ ํšŒ๊ณ  (5)

๊ฐœ๋ฐœ์ž ๋ช…์–ธ

โ€œ ๋งค์ฃผ ๋ชฉ์š”์ผ๋งˆ๋‹ค ๋‹น์‹ ์ด ํ•ญ์ƒ ํ•˜๋˜๋Œ€๋กœ ์‹ ๋ฐœ๋ˆ์„ ๋ฌถ์œผ๋ฉด ์‹ ๋ฐœ์ด ํญ๋ฐœํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•ด๋ณด๋ผ.
์ปดํ“จํ„ฐ๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ๋Š” ์ด๋Ÿฐ ์ผ์ด ํ•ญ์ƒ ์ผ์–ด๋‚˜๋Š”๋ฐ๋„ ์•„๋ฌด๋„ ๋ถˆํ‰ํ•  ์ƒ๊ฐ์„ ์•ˆ ํ•œ๋‹ค. โ€

- Jef Raskin

๋งฅ์˜ ์•„๋ฒ„์ง€ - ์• ํ”Œ์ปดํ“จํ„ฐ์˜ ๋งคํ‚จํ† ์‹œ ํ”„๋กœ์ ํŠธ๋ฅผ ์ฃผ๋„

์ธ๊ธฐ ๊ธ€

์ตœ๊ทผ ๊ธ€

์ตœ๊ทผ ๋Œ“๊ธ€

ํ‹ฐ์Šคํ† ๋ฆฌ

hELLO ยท Designed By ์ •์ƒ์šฐ.
DrawingProcess

๋“œํ”„ DrawingProcess

[Fusion] Sensor Fusion in Self Driving Car (Camera, LiDAR)
Study: Artificial Intelligence(AI)

[Fusion] Sensor Fusion in Self Driving Car (Camera, LiDAR)

2023. 3. 22. 12:01
๋ฐ˜์‘ํ˜•
๐Ÿ’ก ๋ณธ ๋ฌธ์„œ๋Š” 'Sensor Fusion in Self Driving Car(Camera, LiDAR)'์— ๋Œ€ํ•ด ์ •๋ฆฌํ•ด๋†“์€ ๊ธ€์ž…๋‹ˆ๋‹ค.
์นด๋ฉ”๋ผ๋Š” ์‹ ํ˜ธ๋“ฑ์˜ ์ƒ‰์ƒ์„ ๋ณผ ์ˆ˜ ์žˆ์–ด Classification, Lane Detection์— ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. LiDAR๋Š” SLAM(Simultaneous Localization And Mapping) ๋ฐ Depth Estimation(์˜ˆ: ๋ฌผ์ฒด์˜ ์ •ํ™•ํ•œ ๊ฑฐ๋ฆฌ ์ถ”์ •) ์— ์ข‹์Šต๋‹ˆ๋‹ค . ๋งˆ์ง€๋ง‰์œผ๋กœ RADAR ์—๋Š” ๋ฌผ์ฒด์˜ ์†๋„๋ฅผ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ๋ฌธ์—์„œ๋Š” LiDAR์™€ RADAR์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ˜ผํ•ฉํ•˜์—ฌ ๋”์šฑ ์ •๊ตํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์–ป๋Š” Sensor Fusion์— ๋Œ€ํ•ด์„œ ์‚ดํŽด๋ณด๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

Sensor Data & Fusion

์ธ์‹ ๋‹จ๊ณ„์—์„œ๋Š” ํ™˜๊ฒฝ์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด LiDAR, RADAR ๋ฐ ์นด๋ฉ”๋ผ์˜ ์กฐํ•ฉ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์ผ๋ฐ˜์ ์ž…๋‹ˆ๋‹ค. ์ด 3๊ฐ€์ง€ ์„ผ์„œ๋Š” ๋ชจ๋‘ ์žฅ๋‹จ์ ์ด ์žˆ์œผ๋ฉฐ ๋ชจ๋‘ ์‚ฌ์šฉํ•˜๋ฉด ๋ชจ๋“  ์žฅ์ ์„ ๋ˆ„๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

  • Camara: ๋ฌผ์ฒด๋ฅผ ๋ถ„๋ฅ˜ ํ•˜๊ณ  ์žฅ๋ฉด์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ํƒ์›”ํ•ฉ๋‹ˆ๋‹ค.
  • LiDAR: Time-Of-Flight ์„ผ์„œ์ด๊ธฐ ๋•Œ๋ฌธ์— ๊ฑฐ๋ฆฌ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฐ ํƒ์›”ํ•ฉ๋‹ˆ๋‹ค .
  • RADAR: ์žฅ์• ๋ฌผ์˜ ์†๋„๋ฅผ ์ง์ ‘ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด ๊ธฐ์‚ฌ์—์„œ๋Š” LiDAR์™€ ์นด๋ฉ”๋ผ๋ฅผ ์œตํ•ฉํ•˜์—ฌ ์นด๋ฉ”๋ผ์˜ ํ•ด์ƒ๋„, ์ปจํ…์ŠคํŠธ๋ฅผ ์ดํ•ดํ•˜๊ณ  ๊ฐ์ฒด๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ๊ธฐ๋Šฅ์„ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ LiDAR ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•˜์—ฌ ๊ฑฐ๋ฆฌ๋ฅผ ์ถ”์ •ํ•˜๊ณ  3D๋กœ ์„ธ์ƒ์„ ๋ณด๋Š” ๋ฐฉ๋ฒ•์„ ๋ฐฐ์›๋‹ˆ๋‹ค.

Cameraโ€Š—โ€ŠA 2D Sensor

์นด๋ฉ”๋ผ๋Š” ๊ฒฝ๊ณ„ ์ƒ์ž, ์ฐจ์„  ์œ„์น˜, ์‹ ํ˜ธ๋“ฑ ์ƒ‰์ƒ, ๊ตํ†ต ํ‘œ์ง€ํŒ ๋ฐ ๊ธฐํƒ€ ์—ฌ๋Ÿฌ ๊ฐ€์ง€๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” ์ž˜ ์•Œ๋ ค์ง„ ์„ผ์„œ์ž…๋‹ˆ๋‹ค. ๋ชจ๋“  ์ž์œจ์ฃผํ–‰์ฐจ์—์„œ ์นด๋ฉ”๋ผ๋Š” ์ ˆ๋Œ€ ๋น ์งˆ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.

์ด 2D ์„ผ์„œ๋ฅผ LiDAR์™€ ๊ฐ™์€ 3D ์„ผ์„œ์™€ ํ•จ๊ป˜ ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์„๊นŒ?

LiDAR —A 3D Sensor

LiDAR๋Š” Light Detection And Ranging์˜ ์•ฝ์ž์ž…๋‹ˆ๋‹ค. ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ์„ธํŠธ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” 3D ์„ผ์„œ์ž…๋‹ˆ๋‹ค. ๊ฐ๊ฐ์€ (X,Y,Z) ์ขŒํ‘œ๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค. ๋˜ํ•œ 3D ๋ฐ์ดํ„ฐ์—์„œ ๋งŽ์€ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ์‹คํ–‰ ์ค‘์ธ ๊ธฐ๊ณ„ ํ•™์Šต ๋ชจ๋ธ๊ณผ ์‹ ๊ฒฝ๋ง์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ์ถœ๋ ฅ ์˜ˆ์ž…๋‹ˆ๋‹ค.

์ด 3D ์„ผ์„œ๋ฅผ ์นด๋ฉ”๋ผ์™€ ๊ฐ™์€ 2D ์„ผ์„œ์™€ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

Sensor Fusion Algorithms

Sensor Fusion ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ƒ๋‹นํžˆ ๋งŽ์œผ๋ฉฐ, ์ด๋ฅผ ํฌ๊ฒŒ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฐฉ๋ฒ•์—๋Š” ์„ธ ๊ฐ€์ง€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.

  • By Abstraction Level - "When" is the fusion happening?
  • By Centralization Level - "Where" is the fusion happening?
  • By Competition Level - "What" is the fusion doing?

์ž์„ธํ•œ ๋‚ด์šฉ์€ ๋ฌธ์„œ๋ฅผ ์ฐธ์กฐํ•˜์‹ญ์‹œ์˜ค .

" ๋ฌด์—‡ "์€ ๋ถ„๋ช…ํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ๊ฒฝ์Ÿ๊ณผ ์ค‘๋ณต์„ฑ์„ ๋ชฉํ‘œ๋กœ ์‚ผ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. " ์–ด๋””์„œ "๋Š” ๋ณ„๋กœ ์ค‘์š”ํ•˜์ง€ ์•Š์œผ๋ฉฐ ๋งŽ์€ ์†”๋ฃจ์…˜์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. " ๋•Œ "๋กœ ๋‚จ์•„ ์žˆ์Šต๋‹ˆ๋‹ค...

"When"์„ ๊ธฐ์ค€์œผ๋กœ Sensor Fusion์„ ๋ถ„๋ฅ˜ํ•˜๋ฉด? ๋‘ ๊ฐ€์ง€ ํ”„๋กœ์„ธ์Šค๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.

  • Early fusion โ€Š- ์›์‹œ ๋ฐ์ดํ„ฐ(ํ”ฝ์…€ ๋ฐ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ) ์œตํ•ฉ.
  • Late fusion โ€Š- LiDAR ๋ฐ ์นด๋ฉ”๋ผ์˜ bounding box ์œตํ•ฉ.

Early Sensor Fusion - Fusing the Raw Data(low-level)

Early Sensor Fusion์€ ์„ผ์„œ์˜ ์›์‹œ ๋ฐ์ดํ„ฐ๋ฅผ ์œตํ•ฉํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์„ผ์„œ๊ฐ€ ์—ฐ๊ฒฐ๋˜๋Š” ์ฆ‰์‹œ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค.

๊ฐ€์žฅ ์‰ฝ๊ณ  ์ผ๋ฐ˜์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์€ LiDAR ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ(3D)๋ฅผ 2D ์ด๋ฏธ์ง€์— ํˆฌ์˜ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ๊ฐ€ ์นด๋ฉ”๋ผ๋กœ ๊ฐ์ง€๋œ 2D ๊ฒฝ๊ณ„ ์ƒ์ž์— ์†ํ•˜๋Š”์ง€ ์—ฌ๋ถ€๋ฅผ ํ™•์ธํ•ฉ๋‹ˆ๋‹ค.

1. Point Cloud Projection in 2D

์ฒซ ๋ฒˆ์งธ ์•„์ด๋””์–ด๋Š” LiDAR ํ”„๋ ˆ์ž„์˜ 3D ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์—์„œ ์นด๋ฉ”๋ผ ํ”„๋ ˆ์ž„์˜ 2D ํ”„๋กœ์ ์…˜์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ธฐํ•˜ํ•™์  ์›๋ฆฌ๋ฅผ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค(์ž…๋ ฅ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ๋Š” LiDAR ํ”„๋ ˆ์ž„/์œ ํด๋ฆฌ๋“œ ์ขŒํ‘œ์— ์žˆ์Šต๋‹ˆ๋‹ค.)

๊ฐ 3D LiDAR ์ ์„ ๋™์ฐจ ์ขŒํ‘œ ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค .

๋ณ€ํ™˜๋œ ์ ์˜ ํˆฌ์˜ ๋ฐฉ์ •์‹ (๋ณ€ํ™˜ ๋ฐ ํšŒ์ „)์„ ์ ์šฉํ•˜์—ฌ ์ด ์ ์„ liDAR ํ”„๋ ˆ์ž„์—์„œ ์นด๋ฉ”๋ผ ํ”„๋ ˆ์ž„์œผ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ ์ ์„ ๋‹ค์‹œ ์œ ํด๋ฆฌ๋“œ ์ขŒํ‘œ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค.

1๋‹จ๊ณ„ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

2. Object Detection in 2D

๋‹ค์Œ ๋ถ€๋ถ„์€ ์นด๋ฉ”๋ผ๋กœ ๋ฌผ์ฒด๋ฅผ ๊ฐ์ง€ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. YOLOv4์™€ ๊ฐ™์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๊ฐ์ฒด ๊ฐ์ง€๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ํ•ด๋‹น ๋ถ€๋ถ„์— ๋Œ€ํ•ด ๋„ˆ๋ฌด ์ž์„ธํžˆ ์„ค๋ช…ํ•˜์ง€ ์•Š๊ฒ ์Šต๋‹ˆ๋‹ค. ์ด์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ ๋‚ด YOLOv4 ์—ฐ๊ตฌ ๋ฆฌ๋ทฐ๋ฅผ ์ฝ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค .

3. ROI Matching

๋งˆ์ง€๋ง‰ ๋ถ€๋ถ„์€ Region of Interest(ROI)๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๊ฐ ๊ฒฝ๊ณ„ ์ƒ์ž ๋‚ด๋ถ€์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์œตํ•ฉํ•˜๊ธฐ๋งŒ ํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค.

  • ๊ฐ ๊ฒฝ๊ณ„ ์ƒ์ž์— ๋Œ€ํ•ด ์นด๋ฉ”๋ผ๋Š” classification๋ฅผ ์ œ๊ณต
  • ๊ฐ LiDAR ํˆฌ์˜ ์ง€์ ์— ๋Œ€ํ•ด ๋งค์šฐ ์ •ํ™•ํ•œ ๊ฑฐ๋ฆฌ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.

์—ฌ๊ธฐ์„œ ํ•œ ๊ฐ€์ง€ ์งˆ๋ฌธ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์–ด๋А ์ง€์ ์„ ๊ฑฐ๋ฆฌ๋กœ ์„ ํƒํ•ด์•ผ ํ• ๊นŒ์š”?

  • ๋ชจ๋“  ํฌ์ธํŠธ์˜ ํ‰๊ท ๊ฐ’?
  • ์ค‘์•™๊ฐ’?
  • ์ค‘์‹ฌ์ ?
  • ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด?

์„ ํƒํ•œ ์ ์ด ๋‹ค๋ฅธ ๊ฒฝ๊ณ„ ์ƒ์ž์— ์†ํ•˜๋ฉด ์–ด๋–ป๊ฒŒ ๋ฉ๋‹ˆ๊นŒ? ์•„๋‹ˆ๋ฉด ๋ฐฐ๊ฒฝ์œผ๋กœ? ์ด๊ฒƒ์€ ๊นŒ๋‹ค๋กœ์šด ๊ณผ์ •์ž…๋‹ˆ๋‹ค. 2D ์žฅ์• ๋ฌผ ๊ฐ์ง€๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ ์ด ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ํฌ์ธํŠธ๋ฅผ ํ”ฝ์…€๊ณผ ์ •ํ™•ํžˆ ์ผ์น˜์‹œํ‚ค๋ฏ€๋กœ ์„ธ๋ถ„ํ™” ๋ฐฉ์‹์ด ๋” ๋‚˜์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Late Sensor Fusion - Fusing the Results

Late Sensor Fusion์€ ๋…๋ฆฝ์ ์ธ ํƒ์ง€ ํ›„ ๊ฒฐ๊ณผ๋ฅผ ์œตํ•ฉํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์šฐ๋ฆฌ๊ฐ€ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋Š” ํ•œ ๊ฐ€์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์€ ๋…๋ฆฝ์ ์ธ ํƒ์ง€๋ฅผ ์‹คํ–‰ํ•˜๊ณ  ์–‘์ชฝ ๋์— 3D ๊ฒฝ๊ณ„ ์ƒ์ž๋ฅผ ๊ฐ€์ ธ์™€ ๊ฒฐ๊ณผ๋ฅผ ์œตํ•ฉํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

๋˜ ๋‹ค๋ฅธ ์ ‘๊ทผ ๋ฐฉ์‹์€ ๋…๋ฆฝ์ ์ธ ํƒ์ง€๋ฅผ ์‹คํ–‰ํ•˜๊ณ  ์–‘์ชฝ ๋์—์„œ 2D ๊ฒฝ๊ณ„ ์ƒ์ž๋ฅผ ์–ป์€ ๋‹ค์Œ ๊ฒฐ๊ณผ๋ฅผ ์œตํ•ฉํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ์—๊ฒŒ๋Š” ๋‘ ๊ฐ€์ง€ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค. 2D ๋˜๋Š” 3D์—์„œ ํ“จ์ „์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

1. 3D Obstacle Detection (LiDAR)

LiDAR๋ฅผ ์ด์šฉํ•˜์—ฌ 3์ฐจ์›์—์„œ ์žฅ์• ๋ฌผ์„ ์ฐพ๋Š” ๊ณผ์ •์€ ์ž˜ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์ด ์žˆ์Šต๋‹ˆ๋‹ค.

  • Naive approaches, using unsupervised 3D Machine Learning
  • Deep Learning approaches, using algorithms such as RANDLA-NET

2. 3D Obstacle Detection (Camera)

์ด ํ”„๋กœ์„ธ์Šค๋Š” ํŠนํžˆ monocular camera๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ ํ›จ์”ฌ ๋” ์–ด๋ ต์Šต๋‹ˆ๋‹ค. 3D์—์„œ ์žฅ์• ๋ฌผ์„ ์ฐพ์œผ๋ ค๋ฉด ํ”„๋กœ์ ์…˜ ๊ฐ’(intrinsic and extrinsic calibration)์„ ์ •ํ™•ํžˆ ์•Œ๊ณ  ๋”ฅ ๋Ÿฌ๋‹์„ ์‚ฌ์šฉํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์˜ฌ๋ฐ”๋ฅธ ๊ฒฝ๊ณ„ ์ƒ์ž๋ฅผ ์–ป์œผ๋ ค๋ฉด ์ฐจ๋Ÿ‰์˜ ํฌ๊ธฐ์™€ ๋ฐฉํ–ฅ์„ ์•„๋Š” ๊ฒƒ๋„ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๊ด€๋ จ ๋‚ด์šฉ์— ๋Œ€ํ•ด ๊ถ๊ธˆํ•˜๋‹ค๋ฉด '3D Bounding Box Estimation Using Deep Learning and Geometry'๋ฅผ ์ฐธ๊ณ ํ•˜์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.

3. IOU Matching: ๊ณต๊ฐ„์—์„œ IOU ๋งค์นญ(mid-level sensor fusion)

CAMERA์™€ LiDAR๋ฅผ Matchingํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๊ฐ„๋‹จํ•˜๋ฉฐ, ๊ฒฝ๊ณ„ ์ƒ์ž๊ฐ€ 2D ๋˜๋Š” 3D์—์„œ ๊ฒน์น˜๋ฉด ํ•ด๋‹น ์žฅ์• ๋ฌผ์ด ๋™์ผํ•œ ๊ฒƒ์œผ๋กœ ๊ฐ„์ฃผํ•ฉ๋‹ˆ๋‹ค.

๋‹ค์Œ์€ 3D Iou-Net(2020) ๋…ผ๋ฌธ์—์„œ ๊ฐ€์ ธ์˜จ ์˜ˆ์ž…๋‹ˆ๋‹ค.

์ด ์•„์ด๋””์–ด๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์šฐ๋ฆฌ๋Š” ๊ณต๊ฐ„์— ์žˆ๋Š” ๋ฌผ์ฒด๋ฅผ ์—ฐ๊ฒฐํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์„œ๋กœ ๋‹ค๋ฅธ ์„ผ์„œ ๊ฐ„์— ์—ฐ๊ฒฐ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์œ„์˜ IOU Matching ๋ฐฉ๋ฒ•์€ Mid-level Sensor Fusion์— ํ•ด๋‹นํ•˜๋ฉฐ, High level Sensor Fusion์€ Mid-level Sensor Fusion์— ์ถ”์ ์ด ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ์ถ”๊ฐ€๋กœ, Time Tracking์„ ์ถ”๊ฐ€ํ•˜๋ ค๋ฉด Time Association์ด๋ผ๋Š” ๊ณผ์ •์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.

IOU Matching in Time

Kalman Filter์™€ Hungarian algorithm์„ ์‚ฌ์šฉํ•˜์—ฌ ํ”„๋ ˆ์ž„์—์„œ ํ”„๋ ˆ์ž„์œผ๋กœ ๊ฐœ์ฒด๋ฅผ ์‹œ๊ฐ„์— Associationํ•˜์—ฌ, ํ”„๋ ˆ์ž„ ์‚ฌ์ด์˜ ๊ฐœ์ฒด๋ฅผ ์ถ”์ ํ•˜๊ณ  ๋‹ค์Œ ์œ„์น˜๋ฅผ ์˜ˆ์ธกํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.

IOU ๋งค์นญ์˜ ์›๋ฆฌ๋Š” ํ”„๋ ˆ์ž„ 1์—์„œ ํ”„๋ ˆ์ž„ 2๊นŒ์ง€์˜ ๊ฒฝ๊ณ„ ์ƒ์ž๊ฐ€ ๊ฒน์น˜๋Š” ๊ฒฝ์šฐ ์ด ์žฅ์• ๋ฌผ์„ ๋™์ผํ•œ ๊ฒƒ์œผ๋กœ ๊ฐ„์ฃผํ•ฉ๋‹ˆ๋‹ค.

์—ฌ๊ธฐ์—์„œ๋Š” ๊ฒฝ๊ณ„ ์ƒ์ž ์œ„์น˜๋ฅผ ์ถ”์ ํ•˜๊ณ  IOU(Intersection Over Union)๋ฅผ ๋ฉ”ํŠธ๋ฆญ์œผ๋กœ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๊ฒฝ๊ณ„ ์ƒ์ž์˜ ๊ฐœ์ฒด๊ฐ€ ๋™์ผํ•œ์ง€ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด Deep Convolutional ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ํ”„๋กœ์„ธ์Šค๋ฅผ SORT(Simple Online Realtime Tracking) ๋˜๋Š” Convolutional ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ Deep SORT๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

์šฐ๋ฆฌ๋Š” ๊ณต๊ฐ„๊ณผ ์‹œ๊ฐ„์— ์žˆ๋Š” ๋ฌผ์ฒด๋ฅผ ์ถ”์ ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ •ํ™•ํžˆ ๋™์ผํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด ์ ‘๊ทผ ๋ฐฉ์‹์—์„œ ๋†’์€ ์ˆ˜์ค€์˜ ์„ผ์„œ ์œตํ•ฉ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.

Conclusion

์„ผ์„œ ์œตํ•ฉ ํ”„๋กœ์„ธ์Šค๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์„ผ์„œ(์—ฌ๊ธฐ์„œ๋Š” LiDAR์™€ ์นด๋ฉ”๋ผ)์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์œตํ•ฉํ•˜๋Š” ๊ฒƒ์ด๋ฉฐ, LiDAR์™€ ์นด๋ฉ”๋ผ Fusion ์‹œ์ ์— ๋”ฐ๋ผ  ๋‘ ๊ฐ€์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์ด ์žˆ์Šต๋‹ˆ๋‹ค.

  • Early fusion (low-level): ์›์‹œ ๋ฐ์ดํ„ฐ๋ฅผ ์œตํ•ฉํ•˜๋Š” ๊ฒƒ
    • ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์™€ ํ”ฝ์…€ ๋˜๋Š” ์ƒ์ž ๊ฐ„์˜ ์—ฐ๊ด€์„ฑ
  • Late fusion : ๋ฌผ์ฒด๋ฅผ ์œตํ•ฉํ•˜๋Š” ๊ฒƒ(mid-level) or ๊ถค๋„๋ฅผ ์œตํ•ฉํ•˜๋Š” ๊ฒƒ(high-level)
    • bounding box ๊ฐ„์˜ ์—ฐ๊ฒฐ์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ํ—๊ฐ€๋ฆฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ฐ Kalman ํ•„ํ„ฐ์™€ ๊ฐ™์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉ

์ฐธ๊ณ 

  • [Blog] LiDAR and Camera Sensor Fusion in Self-Driving Cars: https://www.thinkautonomous.ai/blog/lidar-and-camera-sensor-fusion-in-self-driving-cars/
  • [Blog] Sensor Fusion - LiDARs & RADARs in Self-Driving Cars: https://www.thinkautonomous.ai/blog/sensor-fusion/
  • [Blog] 9 Types of Sensor Fusion Algorithms: https://www.thinkautonomous.ai/blog/9-types-of-sensor-fusion-algorithms/
๋ฐ˜์‘ํ˜•
์ €์ž‘์žํ‘œ์‹œ ๋น„์˜๋ฆฌ ๋ณ€๊ฒฝ๊ธˆ์ง€ (์ƒˆ์ฐฝ์—ด๋ฆผ)

'Study: Artificial Intelligence(AI)' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

[Vision] OpenCV ์†Œ์Šค ๋นŒ๋“œํ•˜์ง€ ์•Š๊ณ  ์„ค์น˜ํ•˜๊ธฐ (apt install)  (0) 2023.05.04
[Fusion] Sensor Fusion in Self Driving Car(LiDAR, RADAR): feat. Kalman Filter  (0) 2023.03.23
[Vision] RADAR ๋ ˆ์ด๋” ์„ผ์„œ์˜ ๊ตฌ๋™๋ฐฉ์‹ ๋ฐ ํŠน์ง•  (0) 2023.03.21
[Vision] LiDAR ๋ผ์ด๋‹ค ์„ผ์„œ์˜ ๊ตฌ๋™๋ฐฉ์‹ ๋ฐ ํŠน์ง•  (1) 2023.03.20
[Vision] Visual SLAM vs Visual-Inertial Odometry(VIO)  (0) 2023.03.19
    'Study: Artificial Intelligence(AI)' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
    • [Vision] OpenCV ์†Œ์Šค ๋นŒ๋“œํ•˜์ง€ ์•Š๊ณ  ์„ค์น˜ํ•˜๊ธฐ (apt install)
    • [Fusion] Sensor Fusion in Self Driving Car(LiDAR, RADAR): feat. Kalman Filter
    • [Vision] RADAR ๋ ˆ์ด๋” ์„ผ์„œ์˜ ๊ตฌ๋™๋ฐฉ์‹ ๋ฐ ํŠน์ง•
    • [Vision] LiDAR ๋ผ์ด๋‹ค ์„ผ์„œ์˜ ๊ตฌ๋™๋ฐฉ์‹ ๋ฐ ํŠน์ง•
    DrawingProcess
    DrawingProcess
    ๊ณผ์ •์„ ๊ทธ๋ฆฌ์ž!

    ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”