DrawingProcess
๋“œํ”„ DrawingProcess
DrawingProcess
์ „์ฒด ๋ฐฉ๋ฌธ์ž
์˜ค๋Š˜
์–ด์ œ
ยซ   2025/06   ยป
์ผ ์›” ํ™” ์ˆ˜ ๋ชฉ ๊ธˆ ํ† 
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30
  • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ (964)
    • Profile & Branding (22)
      • Career (15)
    • IT Trends (254)
      • Conference, Faire (Experien.. (31)
      • News (187)
      • Youtube (19)
      • TED (8)
      • Web Page (2)
      • IT: Etc... (6)
    • Contents (97)
      • Book (66)
      • Lecture (31)
    • Project Process (94)
      • Ideation (0)
      • Study Report (34)
      • Challenge & Award (22)
      • 1Day1Process (5)
      • Making (5)
      • KRC-FTC (Team TC(5031, 5048.. (10)
      • GCP (GlobalCitizenProject) (15)
    • Study: ComputerScience(CS) (72)
      • CS: Basic (9)
      • CS: Database(SQL) (5)
      • CS: Network (14)
      • CS: OperatingSystem (3)
      • CS: Linux (39)
      • CS: Etc... (2)
    • Study: Software(SW) (95)
      • SW: Language (29)
      • SW: Algorithms (1)
      • SW: DataStructure & DesignP.. (1)
      • SW: Opensource (15)
      • SW: Error Bug Fix (43)
      • SW: Etc... (6)
    • Study: Artificial Intellige.. (149)
      • AI: Research (1)
      • AI: 2D Vision(Det, Seg, Tra.. (35)
      • AI: 3D Vision (70)
      • AI: MultiModal (3)
      • AI: SLAM (0)
      • AI: Light Weight(LW) (3)
      • AI: Data Pipeline (7)
      • AI: Machine Learning(ML) (1)
    • Study: Robotics(Robot) (33)
      • Robot: ROS(Robot Operating .. (9)
      • Robot: Positioning (8)
      • Robot: Planning & Control (7)
    • Study: DeveloperTools(DevTo.. (83)
      • DevTool: Git (12)
      • DevTool: CMake (13)
      • DevTool: NoSQL(Elastic, Mon.. (25)
      • DevTool: Container (17)
      • DevTool: IDE (11)
      • DevTool: CloudComputing (4)
    • ์ธ์ƒ์„ ์‚ด๋ฉด์„œ (64)
      • ๋‚˜์˜ ์ทจ๋ฏธ๋“ค (7)
      • ๋‚˜์˜ ์ƒ๊ฐ๋“ค (42)
      • ์—ฌํ–‰์„ ๋– ๋‚˜์ž~ (10)
      • ๋ถ„๊ธฐ๋ณ„ ํšŒ๊ณ  (5)

๊ฐœ๋ฐœ์ž ๋ช…์–ธ

โ€œ ๋งค์ฃผ ๋ชฉ์š”์ผ๋งˆ๋‹ค ๋‹น์‹ ์ด ํ•ญ์ƒ ํ•˜๋˜๋Œ€๋กœ ์‹ ๋ฐœ๋ˆ์„ ๋ฌถ์œผ๋ฉด ์‹ ๋ฐœ์ด ํญ๋ฐœํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•ด๋ณด๋ผ.
์ปดํ“จํ„ฐ๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ๋Š” ์ด๋Ÿฐ ์ผ์ด ํ•ญ์ƒ ์ผ์–ด๋‚˜๋Š”๋ฐ๋„ ์•„๋ฌด๋„ ๋ถˆํ‰ํ•  ์ƒ๊ฐ์„ ์•ˆ ํ•œ๋‹ค. โ€

- Jef Raskin

๋งฅ์˜ ์•„๋ฒ„์ง€ - ์• ํ”Œ์ปดํ“จํ„ฐ์˜ ๋งคํ‚จํ† ์‹œ ํ”„๋กœ์ ํŠธ๋ฅผ ์ฃผ๋„

์ธ๊ธฐ ๊ธ€

์ตœ๊ทผ ๊ธ€

์ตœ๊ทผ ๋Œ“๊ธ€

ํ‹ฐ์Šคํ† ๋ฆฌ

hELLO ยท Designed By ์ •์ƒ์šฐ.
DrawingProcess

๋“œํ”„ DrawingProcess

[Vision] Key-Point Extraction: ์˜์ƒ ํŠน์ง•์  ์ถ”์ถœ
Study: Artificial Intelligence(AI)

[Vision] Key-Point Extraction: ์˜์ƒ ํŠน์ง•์  ์ถ”์ถœ

2023. 3. 16. 10:19
๋ฐ˜์‘ํ˜•
๐Ÿ’ก ๋ณธ ๋ฌธ์„œ๋Š” '์˜์ƒ ํŠน์ง•์  ์ถ”์ถœ ๋ฐฉ๋ฒ•'์— ๋Œ€ํ•ด ์ •๋ฆฌํ•ด๋†“์€ ๊ธ€์ž…๋‹ˆ๋‹ค.
์˜์ƒ์—์„œ์˜ ํŠน์ง•์ ์„ ์ถ”์ถœํ•˜๋Š” ๋ฐฉ๋ฒ•์ธ Key-Point Extraction ๊ณผ ๊ด€๋ จ๋œ ๋ณ€์ฒœ์‚ฌ๋ฅผ ์ •๋ฆฌํ•˜์˜€์œผ๋‹ˆ ์ฐธ๊ณ ํ•˜์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.

1. ์˜์ƒ ํŠน์ง•์ 

์˜์ƒ์—์„œ ๋ฌผ์ฒด๋ฅผ ์ถ”์ ํ•˜๊ฑฐ๋‚˜ ์ธ์‹ํ•  ๋•Œ, ์˜์ƒ๊ณผ ์˜์ƒ์„ ๋งค์นญํ•˜๋Š” ๊ฐ€์žฅ ์ผ๋ฐ˜์ ์ธ ๋ฐฉ๋ฒ•์€ ์˜์ƒ์—์„œ ์ฃผ์š” ํŠน์ง•์ (keypoint)์„ ๋ฝ‘์•„์„œ ๋งค์นญํ•˜๋Š” ๊ฒƒ์ด๋‹ค. 

์ข‹์€ ์˜์ƒ ํŠน์ง•์ (keypoint)์ด ๋˜๊ธฐ ์œ„ํ•œ ์กฐ๊ฑด

  • ๋ฌผ์ฒด์˜ ํ˜•ํƒœ๋‚˜ ํฌ๊ธฐ, ์œ„์น˜๊ฐ€ ๋ณ€ํ•ด๋„ ์‰ฝ๊ฒŒ ์‹๋ณ„์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ
  • ์นด๋ฉ”๋ผ์˜ ์‹œ์ , ์กฐ๋ช…์ด ๋ณ€ํ•ด๋„ ์˜์ƒ์—์„œ ํ•ด๋‹น ์ง€์ ์„ ์‰ฝ๊ฒŒ ์ฐพ์•„๋‚ผ ์ˆ˜ ์žˆ์„ ๊ฒƒ

์˜์ƒ์—์„œ ์ด๋Ÿฌํ•œ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ๊ฐ€์žฅ ์ข‹์€ keypoint๋ฅผ coner point๋ผ๊ณ ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋Œ€๋ถ€๋ถ„์˜ keypoint์ถ”์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ์ด๋Ÿฌํ•œ coner point ๊ฒ€์ถœ์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•˜๊ณ  ์žˆ๋‹ค.

2. Harris Corner [1988]

[Harris88] C. Harris and M. Stephens, "A combined corner and edge detector", Alvey Vision Conference, 1988

์˜์ƒ์—์„œ coner point, keypoint๋ฅผ ์ฐพ๋Š” ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์€ 1988๋…„์— ๋ฐœํ‘œ๋œ Harris corner detector์ด๋‹ค. ์˜์ƒ์—์„œ corner๋ฅผ ์ฐพ๋Š” ๊ธฐ๋ณธ์ ์ธ ์•„์ด๋””์–ด๋Š” ์˜์ƒ์—์„œ ์ž‘์€ ์œˆ๋„์šฐ๋ฅผ ์กฐ๊ธˆ์”ฉ shift ์‹œ์ผฐ์„ ๋•Œ, ์ฝ”๋„ˆ์ ์˜ ๊ฒฝ์šฐ๋Š” ๋ชจ๋“  ๋ฐฉํ–ฅ์œผ๋กœ ์˜์ƒ๋ณ€ํ™”๊ฐ€ ์ปค์•ผ ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค.

์ด ์•„์ด๋””์–ด๋Š” ์›๋ž˜ 1980๋…„ Moravec corner detector์— ๋‚˜์˜จ ๋‚ด์šฉ์ด๋‹ค. moravec์€ ์ด ์•„์ด๋””์–ด๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด ์˜์ƒ์˜ ๊ฐ ํ”ฝ์…€ ์œ„์น˜์— ๋Œ€ํ•ด ์œˆ๋„์šฐ๋ฅผ ์ˆ˜์ง, ์ˆ˜ํ‰, ์ขŒ๋Œ€๊ฐ์„ , ์šฐ๋Œ€๊ฐ์„  ์ด๋ ‡๊ฒŒ 4๊ฐœ ๋ฐฉํ–ฅ์œผ๋กœ 1ํ”ฝ์…€์”ฉ ์ด๋™์‹œ์ผฐ์„ ๋•Œ์˜ ์˜์ƒ๋ณ€ํ™”๋Ÿ‰(SSD) E๋ฅผ ๊ณ„์‚ฐํ•œ ํ›„, E์˜ ์ตœ์†Œ๊ฐ’์„ ํ•ด๋‹น ํ”ฝ์…€์˜ ์˜์ƒ๋ณ€ํ™”๋Ÿ‰ ๊ฐ’์œผ๋กœ ์„ค์ •ํ•˜๊ณ , ์„ค์ •๋œ min(E)๊ฐ’์ด ์ง€์—ญ์ ์œผ๋กœ ๊ทน๋Œ€๊ฐ€ ๋˜๋Š” ์ง€์ ์„ ์ฝ”๋„ˆ์ ์œผ๋กœ ์ฐพ๋Š” ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ–ˆ๋‹ค.

Harris conner detector๋Š” Moravec์˜ ๋ฐฉ๋ฒ•์„ ์ˆ˜์ • ๋ณด์™„ํ•œ ๊ฒƒ์ด๋‹ค. Harris detector๋Š” ์˜์ƒ์˜ ํ‰ํ–‰์ด๋™, ํšŒ์ „๋ณ€ํ™”์—๋Š” ๋ถˆ๋ณ€(invariant)์ด๊ณ  affine ๋ณ€ํ™”, ์กฐ๋ช…(illumination) ๋ณ€ํ™”์—๋„ ์–ด๋А ์ •๋„๋Š” ๊ฐ•์ธ์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์˜์ƒ์˜ ํฌ๊ธฐ(scale) ๋ณ€ํ™”์—๋Š” ์˜ํ–ฅ์„ ๋ฐ›๊ธฐ ๋•Œ๋ฌธ์— ์‘์šฉ์— ๋”ฐ๋ผ์„œ๋Š” ์—ฌ๋Ÿฌ ์˜์ƒ ์Šค์ผ€์ผ์—์„œ ํŠน์ง•์ ์„ ๋ฝ‘์„ ํ•„์š”๊ฐ€ ์žˆ๋‹ค.

3. Shi & Tomasi [1994]

[Shi94] J. Shi and C. Tomasi, "Good features to track", in CVPR 1994

Shi-Tomasi ํŠน์ง•์  ์ถ”์ถœ ๋ฐฉ๋ฒ•์€ goodFeaturesToTrack() ์ด๋ผ๋Š” ํ•จ์ˆ˜๋ช…์œผ๋กœ opencv์— ๊ตฌํ˜„๋˜์–ด ์žˆ์œผ๋ฉฐ, ํ”ํžˆ optical flow ๋“ฑ์„ ๊ณ„์‚ฐํ•  ๋•Œ ์‚ฌ์šฉํ•  ํŠน์ง•์ ์„ ์ถ”์ถœํ•˜๋Š” ์šฉ๋„ ๋“ฑ์œผ๋กœ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์— ๋ณด๋ฉด, ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์€ ์ฝ”๋„ˆ์  ๋“ฑ ์ง๊ด€์— ์˜์ง€ํ•˜์—ฌ ํŠน์ง•์ ์„ ์ฐพ์•˜๋Š”๋ฐ ์ž์‹ ๋“ค ์ƒ๊ฐ์—๋Š” ์ข‹์€ ํŠน์ง•์ ์ด๋ž€ ์ถ”์  ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์ตœ์ ํ™”๋˜๋„๋ก(์ถ”์ ์ด ์šฉ์ดํ•˜๋„๋ก) ๋ฝ‘์•„์•ผ ํ•˜๋ฉฐ ๋”ฐ๋ผ์„œ ๊ธฐ์กด ๋ฐฉ๋ฒ•์ฒ˜๋Ÿผ ๋‹จ์ˆœํ•œ ํ‰ํ–‰์ด๋™(translation) ๋งŒ์„ ๊ฐ€์ •ํ•ด์„œ๋Š” ์•ˆ๋˜๊ณ  affine ๋ณ€ํ™”๊นŒ์ง€ ๊ณ ๋ คํ•ด์„œ ํŠน์ง•์ ์„ ์„ ํƒํ•ด์•ผ ํ•œ๋‹ค๋Š” ๋“ฑ์˜ ์„ค๋ช…์ด ๋‚˜์˜ต๋‹ˆ๋‹ค.

Shi-Tomasi์˜ ๊ฒฐ๋ก ์€ Harris ๋ฐฉ๋ฒ•์ฒ˜๋Ÿผ M์˜ ๋‘ eigenvalue๋ฅผ ๊ฐ™์ด ๊ณ ๋ คํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค๋Š” λ1, λ2 ์ค‘ ์ตœ์†Œ๊ฐ’๋งŒ์„ ๊ณ ๋ คํ•˜๋Š” ๊ฒƒ์ด ๋” ์ข‹๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ฆ‰, Harris corner์™€ Shi-Tomasi corner๋ฅผ ๋น„๊ตํ•ด ๋ณด๋ฉด Harris๋Š” λ1, λ2๊ฐ€ ๋ชจ๋‘ ๋น„์Šทํ•˜๊ฒŒ ํฐ ๊ฒฝ์šฐ์— corner์ ์œผ๋กœ ์‹๋ณ„ํ•˜๊ณ , Shi-Tomasi๋Š” λ1, λ2 ์ค‘ ์ตœ์†Œ๊ฐ’๋งŒ ์ž„๊ณ„์น˜๋ณด๋‹ค ํฌ๋ฉด corner์ ์œผ๋กœ ์‹๋ณ„ํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.

โ˜ž ๊ทธ๋Ÿฐ๋ฐ, ์ €๋Š” Harris๊ฐ€ ๋” ์ข‹์€ ๋ฐฉ๋ฒ•์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค. ์™œ๋ƒํ•˜๋ฉด ์ตœ์†Œ๊ฐ’์ด ์ž„๊ณ„๊ฐ’๋ณด๋‹ค ํฌ๋”๋ผ๋„ ๋‹ค๋ฅธ ํ•œ ๊ฐ’์ด ์›”๋“ฑํžˆ ๋” ํฌ๋ฉด ์ฝ”๋„ˆ์ ์ด๋ผ๊ธฐ ๋ณด๋‹ค๋Š” edge๋กœ ๋ณด๋Š” ๊ฒƒ์ด ๋” ํƒ€๋‹นํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค (๋ฌผ๋ก  ํ”ฝ์…€์˜ ๋ฐ๊ธฐ๊ฐ’์€ ํ•œ๊ณ„(์ตœ๋Œ€255)๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ตœ์†Œ๊ฐ’๋งŒ ๊ณ ๋ คํ•ด๋„ ๊ฒฐ๊ณผ์ ์œผ๋กœ๋Š” ํฐ ์ฐจ์ด๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค). ๋˜ํ•œ Harris ๋ฐฉ๋ฒ•์€ eigenvalue๋ฅผ ์ง์ ‘ ๊ตฌํ•  ํ•„์š”์—†์ด M์—์„œ ๋ฐ”๋กœ ์‹ (3)์˜ R์„ ๊ณ„์‚ฐํ•˜์—ฌ ์ฝ”๋„ˆ์ ์„ ํŒ๋‹จํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์†๋„๋ฉด์—์„œ๋„ ์ด๋“์ž…๋‹ˆ๋‹ค.

4. SIFT - DoG [2004]

[Lowe04] Lowe, D.G., "Distinctive image features from scale-invariant keypoints", IJCV 2004.

SIFT(Scale Invariant Feature Transform)์€ 2004๋…„ ๋ฐœํ‘œํ•œ ํŠน์ง•์  ์ถ”์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋‹ค. ๊ธฐ์กด์˜ Harris corner๊ฐ€ ์˜์ƒ์˜ ์Šค์ผ€์ผ ๋ณ€ํ™”์— ๋ฏผ๊ฐํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด DoG(Difference of Gaussian)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ด๋ฏธ์ง€ ๋‚ด์—์„œ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์Šค์ผ€์ผ ์ถ•์œผ๋กœ๋„ ์ฝ”๋„ˆ์„ฑ์ด ๊ทน๋Œ€์ธ ์ ์„ ์ฐพ๋Š”๋‹ค.โ€‹

SIFT์—์„œ๋Š” ์ด๋ฏธ์ง€ i๊ฐ€ ์žˆ์„ ๋•Œ, i์˜ ํฌ๊ธฐ๋ฅผ ๋‹จ๊ณ„์ ์œผ๋กœ ์ถ•์†Œ์‹œ์ผœ์„œ ์ผ๋ จ์˜ ์ถ•์†Œ๋œ ์ด๋ฏธ์ง€๋“ค์„ ์ƒ์„ฑํ•œ๋‹ค(์ด๋ฏธ์ง€ ํ”ผ๋ผ๋ฏธ๋“œ). ์ด ๋•Œ, ๊ฐ ์Šค์ผ€์ผ์˜ ์˜์ƒ๋งˆ๋‹ค ์ฝ”๋„ˆ์„ฑ์„ ์กฐ์‚ฌํ•ด์„œ ์ฝ”๋„ˆ์ (์ฝ”๋„ˆ์„ฑ์ด ๋กœ์ปฌํ•˜๊ฒŒ ๊ทน๋Œ€์ด๋ฉด์„œ ์ž„๊ณ„๊ฐ’ ์ด์ƒ)๋“ค์„ ์ฐพ๋Š”๋‹ค. ๊ทธ๋Ÿฌ๋ฉด ๊ฐ ์Šค์ผ€์ผ ์ด๋ฏธ์ง€๋งˆ๋‹ค ์ฝ”๋„ˆ์ ๋“ค์ด ๊ฒ€์ถœ๋˜๋Š”๋ฐ, ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ ์ธ์ ‘ํ•œ ์—ฌ๋Ÿฌ ์˜์ƒ ์Šค์ผ€์ผ์— ๊ฑธ์ณ์„œ ๋™์ผํ•œ ์ง€์ ์ด ์ฝ”๋„ˆ์ ์œผ๋กœ ๊ฒ€์ถœ๋œ๋‹ค. ๊ทธ์ค‘ ์Šค์ผ€์ผ ์ถ•์„ ๋”ฐ๋ผ์„œ๋„ ์ฝ”๋„ˆ์„ฑ์ด ๊ทน๋Œ€์ธ ์ ์„ ์ฐพ๋Š”๋‹ค. ์ด ์ ์„ scale invariantํ•œ ํŠน์ง•์ ์ด๋ผ๊ณ  ํ•œ๋‹ค.

 

scale invariantํ•œ ํŠน์ง•์ ์€ ์ž…๋ ฅ ์ด๋ฏธ์ง€์˜ ์Šค์ผ€์ผ์ด ์–ด๋–ป๊ฒŒ ์ฃผ์–ด์ง€๋”๋ผ๋„ ํ•ด๋‹น ํŠน์ง•์ ์„ ์ฐพ์•„๋‚ผ ์ˆ˜ ์žˆ๋‹ค. SIFT๋Š” ์ด๋ฏธ์ง€ ํ”ผ๋ผ๋ฏธ๋“œ์ƒ์—์„œ LAPLACIAN ๊ฐ’์ด ๊ทน๋Œ€ ๋˜๋Š” ๊ทน์†Œ๊ฐ€ ๋˜๋Š” ์ ๋“ค์„ ํŠน์ง•์ ์œผ๋กœ ์žก๋Š”๋‹ค.

5. FAST [2006]

[Rosten06] E. Rosten and T. Drummond, "Machine learning for high-speed corner detection", in ECCV 2006

FAST(Features from Accelerated Segment Test)๋Š” 2006๋…„ ๋ฐœํ‘œํ•œ ๊ทน๋„์˜ ๋น ๋ฆ„์„ ์ถ”๊ตฌํ•œ ํŠน์ง•์  ์ถ”์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋‹ค. FAST๋Š” ์†๋„์— ์ตœ์ ํ™”๋จ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํŠน์ง•์ ์˜ ํ’ˆ์งˆ(repeatability)๊ฐ€ ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค๋ณด๋‹ค ๋›ฐ์–ด๋‚˜๋‹ค.

FAST์—์„œ๋Š” ์–ด๋–ค ์  P๊ฐ€ ์ฝ”๋„ˆ์ธ์ง€ ์—ฌ๋ถ€๋ฅผ p๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ•˜๋Š” ๋ฐ˜์ง€๋ฆ„ 3์ธ ์› ์ƒ์˜ 16๊ฐœ ํ”ฝ์…€๊ฐ’์„ ๋ณด๊ณ  ํŒ๋‹จํ•œ๋‹ค. p๋ณด๋‹ค ์ผ์ •๊ฐ’ ์ด์ƒ ๋ฐ์€ ํ”ฝ์…€๋“ค์ด n๊ฐœ ์ด์ƒ ์—ฐ์†๋˜์–ด ์žˆ๊ฑฐ๋‚˜ ์ผ์ •๊ฐ’ ์ด์ƒ ์–ด๋‘์šด ํ”ฝ์…€๋“ค์ด n๊ฐœ ์ด์ƒ ์—ฐ์†๋˜์–ด ์žˆ์œผ๋ฉด p๋ฅผ ์ฝ”๋„ˆ์ ์œผ๋กœ ํŒ๋‹จํ•œ๋‹ค.

FAST ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ n์„ ์–ด๋–ป๊ฒŒ ์žก๋А๋ƒ์— ๋”ฐ๋ผ์„œ FAST-9, FAST-10, FAST-11, FAST-12, ..., FAST-16๊ณผ ๊ฐ™์ด ๋‹ค์–‘ํ•œ ๋ฒ„์ „์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰, FAST-9๋Š” p๋ณด๋‹ค ์ผ์ •๊ฐ’ ์ด์ƒ ๋ฐ๊ฑฐ๋‚˜ ์–ด๋‘์šด ํ”ฝ์…€๋“ค์ด ์›์„ ๋”ฐ๋ผ์„œ ์—ฐ์†์ ์œผ๋กœ 9๊ฐœ ์ด์ƒ ์กด์žฌํ•˜๋Š” ๊ฒฝ์šฐ๋ฅผ ์ฝ”๋„ˆ์ ์œผ๋กœ ๊ฒ€์ถœํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋‹ค.

FAST ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ๋Š” ์–ด๋–ค ์  p๊ฐ€ ์ฝ”๋„ˆ์ ์ธ์ง€ ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ™์€ ์œ ํ˜•์˜ ์—ฐ์†๋œ ์ ๋“ค์˜ ๊ฐœ์ˆ˜๋ฅผ ์ง์ ‘ ์„ธ๋Š” ๋Œ€์‹ ์— decision tree๋ฅผ ์ด์šฉํ•˜์—ฌ ์ฝ”๋„ˆ์  ์—ฌ๋ถ€๋ฅผ ๋น ๋ฅด๊ฒŒ ํŒ๋‹จํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ํ”ฝ์…€์˜ ๋ฐ๊ธฐ๊ฐ’์„ p๋ณด๋‹ค ํœ ์”ฌ ๋ฐ๊ฑฐ๋‚˜ ์–ด๋‘์šด ๊ฒฝ์šฐ, p์™€ ์œ ์‚ฌํ•œ ๊ฒฝ์šฐ์˜ 3๊ฐ€์ง€ ๊ฐ’์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ  ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ์›์ฃผ์ƒ์˜ ํ”ฝ์…€๋“ค์˜ ๋ฐ๊ธฐ๋ถ„ํฌ๋ฅผ 16์ฐจ์›์˜ ternary ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ด๋ฅผ decision tree์— ์ž…๋ ฅํ•˜์—ฌ ์ฝ”๋„ˆ์  ์—ฌ๋ถ€๋ฅผ ๋ถ„๋ฅ˜ํ•œ๋‹ค.

FAST ์ฝ”๋„ˆ์˜ ํ•œ๊ฐ€์ง€ ๋ฌธ์ œ์ ์€ ์–ด๋–ค ์  p๊ฐ€ ์ฝ”๋„ˆ์ ์œผ๋กœ ์ธ์‹๋˜๋ฉด p์™€ ์ธ์ ‘ํ•œ ์ฃผ๋ณ€ ์ ๋“ค๋„ ๊ฐ™์ด ์ฝ”๋„ˆ์ ์œผ๋กœ ๊ฒ€์ถœ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. FAST๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด non-maximal suppression ํ›„์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ธ์ ‘ํ•œ ์—ฌ๋Ÿฌ ์ ๋“ค ์ค‘ ์ฝ”๋„ˆ์„ฑ์ด ๊ทน๋Œ€์ธ ์ ๋งŒ์„ ๋‚จ๊ธฐ๊ณ  ๋‚˜๋จธ์ง€๋ฅผ ์ œ๊ฑฐํ•œ๋‹ค.

์ €์ž์˜ ์‹คํ—˜์— ์˜ํ•˜๋ฉด, ์—ฌ๋Ÿฌ FAST ๋ฒ„์ „๋“ค ์ค‘ FAST-9์˜ ์„ฑ๋Šฅ์ด ๊ฐ€์žฅ ์ข‹์œผ๋ฉฐ ๊ธฐ์กด ๋ฐฉ๋ฒ•์— ๋น„ํ•ด 10๋ฐฐ ์ด์ƒ์˜ ์†๋„ ์ฆ๊ฐ€๋ฅผ ๊ฐ€์ ธ์˜จ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ํŠน์ง•์ ์˜ ํ’ˆ์งˆ(repeatability) ๋˜ํ•œ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์„ ์ƒํšŒํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

Fast์˜ ์†๋„ ์„ฑ๋Šฅ https://darkpgmr.tistory.com/131

6. AGAST [2010]

[Mair10] E. Mair, G. Hager, D. Burschka, M. Suppa, and G. Hirzinger, "Adaptive and generic corner detection based on the accelerated segment test," in ECCV 2010

๋…ผ๋ฌธ์˜ ์ฃผ์žฅ์— ๋”ฐ๋ฅด๋ฉด AGAST ๋ฐฉ๋ฒ•์ด FAST์— ๋น„ํ•ด 20 ~ 30% ์ •๋„ ์†๋„๊ฐ€ ๋” ๋น ๋ฅด๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

7. ์ฃผ์š” ๋ถˆ๋ณ€ ํŠน์ง•๋Ÿ‰(descriptor) ๋ฐฉ๋ฒ•์—์„œ ์‚ฌ์šฉํ•˜๋Š” ํŠน์ง•์ (keypoint)

SIFT, SURF, BRIEF, ORB, FREAK ๋“ฑ๊ณผ ๊ฐ™์€ ์ง€์—ญ์  ๋ถˆ๋ณ€ ํŠน์ง•๋Ÿ‰ (local invariant feature descriptor) ๋ฐฉ๋ฒ•๋“ค์—์„œ ์‚ฌ์šฉํ•˜๋Š” ํŠน์ง•์ (keypoint)์ด ์–ด๋–ค ๊ฒƒ์ธ์ง€ ๊ฐ„๋‹จํžˆ ์‚ดํŽด ๋ณด๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.

๋จผ์ €, ์ง€์—ญ ๋ถˆ๋ณ€ ํŠน์ง•๋Ÿ‰(descriptor)๊ณผ ํŠน์ง•์ (keypoint)์„ ์„œ๋กœ ๊ตฌ๋ถ„ํ•  ํ•„์š”๊ฐ€ ์žˆ๋Š”๋ฐ keypoint๋Š” ํŠน์ง•์ด ๋˜๋Š” ์ ์˜ ์˜์ƒ์ขŒํ‘œ (x,y)๋ฅผ ์˜๋ฏธํ•˜๊ณ (scale space๊นŒ์ง€ ๊ณ ๋ คํ•œ๋‹ค๋ฉด (x,y,s)), descriptor๋Š” ํ•ด๋‹น keypoint ์œ„์น˜์—์„œ ์ถ”์ถœํ•œ ์ง€์—ญ์  ์˜์ƒ ํŠน์ง• ์ •๋ณด(ex. gradient ๋ถ„ํฌ ํžˆ์Šคํ† ๊ทธ๋žจ ๋“ฑ)๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.

๋Œ€ํ‘œ์ ์ธ ์ง€์—ญ ๋ถˆ๋ณ€ ํŠน์ง•๋Ÿ‰(descriptor)๋“ค๋กœ๋Š” SIFT, SURF, ORB ๋“ฑ์ด ์žˆ๋Š”๋ฐ, descriptor ๊ณ„์‚ฐ์„ ์œ„ํ•ด์„œ๋Š” ์ผ๋‹จ์€ keypoint๋ฅผ ๋ฝ‘์•„์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ด๋“ค ์ง€์—ญ ๋ถˆ๋ณ€ ํŠน์ง•๋Ÿ‰ ๋ฐฉ๋ฒ•๋“ค๋„ ๋‚˜๋ฆ„์˜ ํŠน์ง•์  ์ถ”์ถœ ๋ฐฉ๋ฒ•์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์‹ค ์ง€์—ญ ๋ถˆ๋ณ€ ํŠน์ง•๋Ÿ‰๊ณผ ํŠน์ง•์ ์€ ์„œ๋กœ ๋ณ„๊ฐœ์˜ ์–˜๊ธฐ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ž„์˜์˜ keypoint + descriptor ์กฐํ•ฉ์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, FAST๋กœ ํŠน์ง•์ ์„ ๋ฝ‘์€ ํ›„ SIFT๋กœ descriptor๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๊ฒƒ๋„ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.

SIFT์˜ ๊ฒฝ์šฐ๋Š” ์•ž์„œ DoG๋ฅผ ์ด์šฉํ•˜์—ฌ ํŠน์ง•์ ์„ ์ถ”์ถœํ•œ๋‹ค๊ณ  ์„ค๋ช…ํ•œ ๋ฐ” ์žˆ๋Š”๋ฐ, ๊ทธ์™ธ ๋‹ค๋ฅธ ์ง€์—ญ ๋ถˆ๋ณ€ ํŠน์ง•๋Ÿ‰ ๋ฐฉ๋ฒ•๋“ค์—์„œ๋Š” ์–ด๋–ค ํŠน์ง•์  ์ถ”์ถœ ๋ฐฉ๋ฒ•๋“ค์ด ์‚ฌ์šฉ๋˜๋Š”์ง€ ๊ฐ„๋‹จํžˆ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

SURF [Bay06]

: Bay, H., Tuytelaars, T., and Van Gool, L., "Surf: Speeded up robust features," in ECCV 2006

  • Scale space ์ƒ์—์„œ Hessian ํ–‰๋ ฌ์˜ ํ–‰๋ ฌ์‹(determinant)์ด ๊ทน๋Œ€์ธ ์ ๋“ค์„ ํŠน์ง•์ ์œผ๋กœ ๊ฒ€์ถœ.
  • SURF์—์„œ ์‚ฌ์šฉํ•œ ํŠน์ง•์  ์ถ”์ถœ ๋ฐฉ๋ฒ•์„ Fast Hessian์ด๋ผ ๋ถ€๋ฆ„.

Ferns [Ozuysal07]

: Ozuysal, M., Fua, P., and Lepetit, V., "Fast Keypoint Recognition in Ten Lines of Code," in CVPR 2007

  • Scale space ์ƒ์—์„œ Laplacian์ด ๊ทน๋Œ€์ธ ์ ๋“ค์„ ํŠน์ง•์ ์œผ๋กœ ๊ฒ€์ถœ
  • ๋‹จ 3๊ฐœ์˜ scale๋กœ๋งŒ ๊ตฌ์„ฑ๋œ ์ด๋ฏธ์ง€ ํ”ผ๋ผ๋ฏธ๋“œ์—์„œ Laplacian ๊ทน๋Œ€์ ์„ ์ฐพ์€ ์ ์—์„œ ๋ชจ๋“  ์Šค์ผ€์ผ์— ๋Œ€ํ•ด์„œ ํŠน์ง•์ ์„ ์ฐพ์€ SIFT์™€ ์ฐจ์ด๊ฐ€ ์žˆ์Œ

BRIEF [Calonder10]

: Calonder, M., Lepetit, V., Strecha, C., and Fua, P, "Brief: Binary robust independent elementary features," in ECCV 2010

  • BRIEF์—๋Š” ๋ณ„๋„์˜ ํŠน์ง•์  ์ถ”์ถœ ๋ฐฉ๋ฒ•์ด ํฌํ•จ๋˜์–ด ์žˆ์ง€ ์•Š์Œ
  • SURF์˜ ํŠน์ง•์ ์„ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•˜์—ฌ SURF์™€ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜๊ฑฐ๋‚˜ Star(CenSurE) ํŠน์ง•์ ์„ ์ด์šฉํ•˜์—ฌ ์„ฑ๋Šฅ์„ ๋น„๊ต

ORB [Rublee11]

: Rublee, E., Rabaud, V., Konolige, K., and Bradski, G., "ORB: an efficient alternative to SIFT or SURF," in ICCV 2011

  • FAST-9 ์„ ์ด์šฉํ•˜์—ฌ ํŠน์ง•์ ์„ ๊ฒ€์ถœํ•œ ํ›„ ๋‚˜๋ฆ„์˜ ๋ฐฉ๋ฒ•(Intensity Centroid)์œผ๋กœ ํŠน์ง•์ ์˜ ๋ฐฉํ–ฅ(orientation)์„ ๊ณ„์‚ฐ

BRISK [Leutenegger11]

: Leutenegger, S., Chli, M., and Siegwart, R. Y., "BRISK: Binary robust invariant scalable keypoints," in ICCV 2011

  • Scale space ์ƒ์—์„œ FAST-9์„ ์ด์šฉํ•˜์—ฌ FAST score๊ฐ€ ๊ทน๋Œ€์ธ ์ ์„ ํŠน์ง•์ ์œผ๋กœ ๊ฒ€์ถœ

FREAK [Alahi12]

: A. Alahi, R. Ortiz, and P. Vandergheynst, "FREAK: Fast Retina Keypoint," in CVPR 2012

  • ๋ณ„๋„์˜ ํŠน์ง•์  ์ถ”์ถœ ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•˜์ง€ ์•Š๊ณ  BRISK์—์„œ ์‚ฌ์šฉํ•œ ํŠน์ง•์  ์ถ”์ถœ ๋ฐฉ๋ฒ•์„ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉ

์ฐธ๊ณ 

  • [Blog] ์˜์ƒ ํŠน์ง•์ (keypoint) ์ถ”์ถœ๋ฐฉ๋ฒ•: https://darkpgmr.tistory.com/131
  • [Blong] ORB-SLAM: a Versatile and Accurate Monocular SLAM System: https://blog.naver.com/PostView.nhn?blogId=dnjswns2280&logNo=222086846193&categoryNo=20&parentCategoryNo=0&viewDate=&currentPage=1&postListTopCurrentPage=1&from=search 
๋ฐ˜์‘ํ˜•
์ €์ž‘์žํ‘œ์‹œ ๋น„์˜๋ฆฌ ๋ณ€๊ฒฝ๊ธˆ์ง€ (์ƒˆ์ฐฝ์—ด๋ฆผ)

'Study: Artificial Intelligence(AI)' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

[Vision] LiDAR ๋ผ์ด๋‹ค ์„ผ์„œ์˜ ๊ตฌ๋™๋ฐฉ์‹ ๋ฐ ํŠน์ง•  (1) 2023.03.20
[Vision] Visual SLAM vs Visual-Inertial Odometry(VIO)  (0) 2023.03.19
[๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] ORB-SLAM: a Versatile and Accurate Monocular SLAM System  (0) 2023.03.16
[Vision] SURF (Speed-Up Robust Feature)์˜ ์›๋ฆฌ.txt  (0) 2021.06.08
[Vision] SIFT (Scale-Invariant Feature Transform)์˜ ์›๋ฆฌ.txt  (0) 2021.06.01
    'Study: Artificial Intelligence(AI)' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
    • [Vision] LiDAR ๋ผ์ด๋‹ค ์„ผ์„œ์˜ ๊ตฌ๋™๋ฐฉ์‹ ๋ฐ ํŠน์ง•
    • [Vision] Visual SLAM vs Visual-Inertial Odometry(VIO)
    • [๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] ORB-SLAM: a Versatile and Accurate Monocular SLAM System
    • [Vision] SURF (Speed-Up Robust Feature)์˜ ์›๋ฆฌ.txt
    DrawingProcess
    DrawingProcess
    ๊ณผ์ •์„ ๊ทธ๋ฆฌ์ž!

    ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”