DrawingProcess
๋“œํ”„ DrawingProcess
DrawingProcess
์ „์ฒด ๋ฐฉ๋ฌธ์ž
์˜ค๋Š˜
์–ด์ œ
ยซ   2025/05   ยป
์ผ ์›” ํ™” ์ˆ˜ ๋ชฉ ๊ธˆ ํ† 
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
  • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ (964)
    • Profile & Branding (22)
      • Career (15)
    • IT Trends (254)
      • Conference, Faire (Experien.. (31)
      • News (187)
      • Youtube (19)
      • TED (8)
      • Web Page (2)
      • IT: Etc... (6)
    • Contents (97)
      • Book (66)
      • Lecture (31)
    • Project Process (94)
      • Ideation (0)
      • Study Report (34)
      • Challenge & Award (22)
      • 1Day1Process (5)
      • Making (5)
      • KRC-FTC (Team TC(5031, 5048.. (10)
      • GCP (GlobalCitizenProject) (15)
    • Study: ComputerScience(CS) (72)
      • CS: Basic (9)
      • CS: Database(SQL) (5)
      • CS: Network (14)
      • CS: OperatingSystem (3)
      • CS: Linux (39)
      • CS: Etc... (2)
    • Study: Software(SW) (95)
      • SW: Language (29)
      • SW: Algorithms (1)
      • SW: DataStructure & DesignP.. (1)
      • SW: Opensource (15)
      • SW: Error Bug Fix (43)
      • SW: Etc... (6)
    • Study: Artificial Intellige.. (149)
      • AI: Research (1)
      • AI: 2D Vision(Det, Seg, Tra.. (35)
      • AI: 3D Vision (70)
      • AI: MultiModal (3)
      • AI: SLAM (0)
      • AI: Light Weight(LW) (3)
      • AI: Data Pipeline (7)
      • AI: Machine Learning(ML) (1)
    • Study: Robotics(Robot) (33)
      • Robot: ROS(Robot Operating .. (9)
      • Robot: Positioning (8)
      • Robot: Planning & Control (7)
    • Study: DeveloperTools(DevTo.. (83)
      • DevTool: Git (12)
      • DevTool: CMake (13)
      • DevTool: NoSQL(Elastic, Mon.. (25)
      • DevTool: Container (17)
      • DevTool: IDE (11)
      • DevTool: CloudComputing (4)
    • ์ธ์ƒ์„ ์‚ด๋ฉด์„œ (64)
      • ๋‚˜์˜ ์ทจ๋ฏธ๋“ค (7)
      • ๋‚˜์˜ ์ƒ๊ฐ๋“ค (42)
      • ์—ฌํ–‰์„ ๋– ๋‚˜์ž~ (10)
      • ๋ถ„๊ธฐ๋ณ„ ํšŒ๊ณ  (5)

๊ฐœ๋ฐœ์ž ๋ช…์–ธ

โ€œ ๋งค์ฃผ ๋ชฉ์š”์ผ๋งˆ๋‹ค ๋‹น์‹ ์ด ํ•ญ์ƒ ํ•˜๋˜๋Œ€๋กœ ์‹ ๋ฐœ๋ˆ์„ ๋ฌถ์œผ๋ฉด ์‹ ๋ฐœ์ด ํญ๋ฐœํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•ด๋ณด๋ผ.
์ปดํ“จํ„ฐ๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ๋Š” ์ด๋Ÿฐ ์ผ์ด ํ•ญ์ƒ ์ผ์–ด๋‚˜๋Š”๋ฐ๋„ ์•„๋ฌด๋„ ๋ถˆํ‰ํ•  ์ƒ๊ฐ์„ ์•ˆ ํ•œ๋‹ค. โ€

- Jef Raskin

๋งฅ์˜ ์•„๋ฒ„์ง€ - ์• ํ”Œ์ปดํ“จํ„ฐ์˜ ๋งคํ‚จํ† ์‹œ ํ”„๋กœ์ ํŠธ๋ฅผ ์ฃผ๋„

์ธ๊ธฐ ๊ธ€

์ตœ๊ทผ ๊ธ€

์ตœ๊ทผ ๋Œ“๊ธ€

ํ‹ฐ์Šคํ† ๋ฆฌ

hELLO ยท Designed By ์ •์ƒ์šฐ.
DrawingProcess

๋“œํ”„ DrawingProcess

Study: Artificial Intelligence(AI)/AI: 3D Vision

[๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] IE-NeRF: NeRFwithRealWorld + Ha-NeRF + Inpainting - Inpainting Enhanced Neural Radiance Fields in the Wild (Arxiv 2024)

2024. 11. 15. 00:54
๋ฐ˜์‘ํ˜•
๐Ÿ’ก ๐Ÿ’ก ๋ณธ ๋ฌธ์„œ๋Š” 'IE-NeRF: Inpainting Enhanced Neural Radiance Fields in the Wild (Arxiv 2024)' ๋…ผ๋ฌธ์„ ์ •๋ฆฌํ•ด๋†“์€ ๊ธ€์ด๋‹ค.
ํ•ด๋‹น ๋…ผ๋ฌธ์€ ๊ด€๊ด‘๊ฐ์ด ์ฐ์€ ๋ฐ์ดํ„ฐ์…‹์„ ํ™œ์šฉํ•˜์—ฌ 3D Reconstruction์„ ์ง„ํ–‰ํ•˜๋Š” Task(unstructured tourist environments)๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋…ผ๋ฌธ์ด๋‹ค. ์ด๋Š” Ha-NeRF ๊ธฐ๋ฐ˜์— inpainting ๋ชจ๋“ˆ์„ ์ถ”๊ฐ€ํ•˜์—ฌ trasient object๋ฅผ ์ œ๊ฑฐํ•œ ๋…ผ๋ฌธ์ด๋‹ˆ ์ฐธ๊ณ ํ•˜๊ธฐ ๋ฐ”๋ž€๋‹ค.

 - Paper: https://arxiv.org/abs/2407.10695

Abstract

NeRF๋Š” ์ œ์–ด๋œ ์„ค์ •์—์„œ ์ธ์ƒ์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€์ง€๋งŒ, ๋™์ ์ด๊ณ  ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ•˜๋Š” ์žฅ๋ฉด์—์„œ ํ”ํžˆ ๋ณผ ์ˆ˜ ์žˆ๋Š” transient object๋กœ ์ธํ•ด ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค.

์šฐ๋ฆฌ์˜ Inpainting Enhanced NeRF(IE-NeRF)๋Š” transient ๋งˆ์Šคํฌ๋ฅผ ํ™œ์šฉํ•˜์—ฌ occlusions์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ฐฐ์ œํ•˜์—ฌ ๋ณผ๋ฅจ ๋ Œ๋”๋ง ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ธํŽ˜์ธํŒ… ๋ชจ๋“ˆ์„ ์†Œ๊ฐœํ•œ๋‹ค. ๋˜ํ•œ low-frequency transient components์˜ sparsity ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ฃผํŒŒ์ˆ˜ ์ •๊ทœํ™”๋ฅผ ํ†ตํ•œ ์ƒˆ๋กœ์šด ํ›ˆ๋ จ ์ „๋žต์„ ์ œ์•ˆํ•œ๋‹ค.

์ด ๋…ผ๋ฌธ์ด ๊ฐ€์ง€๋Š” contribution ์ค‘ ๊ฐ€์žฅ ๋ฉ”์ธ์ด ๋˜๋Š” ๋ถ€๋ถ„์„ ์ •๋ฆฌํ•ด๋ณด๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  •  Ha-NeRF ๊ธฐ๋ฐ˜์˜ Network์— image inpainting์œผ๋กœ in the wild ๋ Œ๋”๋ง์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค.
  • Frequency Regulzrizationํ•œ IPE๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋น ๋ฅธ ์ธํผ๋Ÿฐ์Šค์™€ transient ์š”์†Œ๋ฅผ ๋น ๋ฅด๊ฒŒ ๋ถ„๋ฆฌ ๊ฐ€๋Šฅํ–ˆ๋‹ค.

Related Works

Removing Objects From Neural Radiance Fields

RGB-D sequence data๋กœ๋ถ€ํ„ฐ distractors ์ œ๊ฑฐํ•œ๋‹ค. RGB ์ด๋ฏธ์ง€์™€ Depth ์ด๋ฏธ์ง€์— LaMa inpainting์„ ์ ์šฉํ•œ๋‹ค. ์ดํ›„, NeRF ๋ชจ๋ธ ์ตœ์ ํ™”ํ•œ๋‹ค.

SPIn-NeRF

NeRF ๊ธฐ๋ฐ˜์˜ 3D inpainting ๋ฐฉ๋ฒ•๋ก ์œผ๋กœ, image inpainting์„ ํ• ๋•Œ occulsion์— ๋Œ€ํ•œ ๊ฒƒ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ geometry๋„ ๊ฐ€์ด๋“œํ•œ๋‹ค(multi-view mask). 

Methods

Network

Ha-NeRF์™€ ๋งค์šฐ ์œ ์‚ฌํ•œ ๊ตฌ์กฐ๋กœ, input์œผ๋กœ pos, dir๊ณผ Appearance Embedding์„ ์ถ”๊ฐ€๋กœ ๋„ฃ์–ด์ค€๋‹ค. ์ด๋•Œ Appearance Embedding์€ reference image๋ฅผ CNN ํ†ต๊ณผ์‹œํ‚จ Vector๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. Static Rendering, Mask Generation๊นŒ์ง€ Ha-NeRF์™€ ๋™์ผํ•˜๋‚˜, MLP๋ฅผ ํ•˜๋‚˜๋งŒ ์‚ฌ์šฉํ•˜๋Š” ๋ถ€๋ถ„์ด ๋‹ค๋ฅด๋‹ค.

Inpainting

input์œผ๋กœ appearance emb, pixel locations์„ ๋„ฃ์–ด์ฃผ์–ด Transient Mask๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ์ดํ›„ pretrained LaMa ๋ชจ๋“ˆ ์‚ฌ์šฉํ•˜์—ฌ inpainting์„ ์ง„ํ–‰ํ•œ๋‹ค. LaMa ๋ชจ๋“ˆ์€ large mask์— robust ํ•˜๋ฉฐ less param์— time efficientํ•˜๋‹ค.

Optimization

Photometric(Scene) loss์™€ Transient loss๋กœ ๊ตฌ์„ฑ๋˜์–ด์žˆ๋‹ค.

1) Photometric(Scene) loss

inpained image์˜ color์™€ coarse/fine rendered color ๊ฐ„์˜ MSE

2) Transient loss

Static Scene์€ GT์™€ ๋น„๊ตํ•˜๊ณ , Transient Scene์€ Inpainted Color์™€ ๋น„๊ตํ•œ๋‹ค.

  • first term: GT color์™€ rendered color๋ฅผ ๋น„๊ตํ•จ์œผ๋กœ์จ distractor ์กด์žฌํ•˜๋Š”์ง€ ํŒ๋‹จํ•œ๋‹ค.
  • second term: inpainted color์™€ rendered color๋ฅผ ๋น„๊ตํ•จ์œผ๋กœ์จ static and transient elements ๋ฒจ๋Ÿฐ์‹ฑ์„ ์กฐ์œจํ•œ๋‹ค.
  • ์ด๋•Œ, The parameter λ is used to adjust the balance between the transient and static components

Integrated Positional Encoding (IPE)

Mip-NeRF์—์„œ ์‚ฌ์šฉํ•œ IPE๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ conicla frustum์œผ๋กœ multiscale representation ํ•™์Šตํ•œ๋‹ค. ์ด๋Š” high-frequency์— ๊ฐ•์ธํ•˜๋‚˜, low-frequency์—์„œ distractor ์กด์žฌํ•˜๋Š” ๊ฒฝ์šฐ ๋ฐœ์ƒํ–ˆ๋‹ค. ๋”ฐ๋ผ์„œ PE๋ฅผ ์ ์ง„์ ์œผ๋กœ ์ ์šฉ(Regularization)ํ•˜๋Š” RegFre-IPE๋ฅผ ํ™œ์šฉํ–ˆ๋‹ค.

Experiments

steadyํ•œ ๋ฐฉ๋ฒ•๋ก ๋“ค๊ณผ์˜ ์„ฑ๋Šฅ ๋น„๊ต๋งŒ ๋‹ค๋ฃจ๊ณ  ์žˆ๋Š” ์ ์ด ์•„์‰ฝ์ง€๋งŒ, ์•„๋ž˜์˜ ์ •์„ฑ์ ์ธ ํ‰๊ฐ€ ๊ฒฐ๊ณผ ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•๋ก ์— ๋น„ํ•ด ๋ฐ”๋‹ฅ๋ฉด์„ ์ž˜ ์‚ด๋ฆฌ๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

transient components๋ฅผ renderingํ•œ visibility map๋„ ๋‹ค๋ฅธ NeRF ๋ฐฉ๋ฒ•๋ก ์— ๋น„ํ•ด ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

๋‹ค๋งŒ ์•„๋ž˜ ์˜ค๋ฅธ์ชฝ์˜ ํ‘œ์— ๋ณด์ด๋“ฏ์ด, RegFre-IPE(IPE + Regularization)๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  IPE๋งŒ ์‚ฌ์šฉํ•œ ๊ฒฝ์šฐ Ha-NeRF์— ๋น„ํ•ด์„œ๋„ ์„ฑ๋Šฅ์ด ๋–จ์–ด์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์–ด ํ•ด๋‹น ๋ฐฉ๋ฒ•๋ก ์ด ๋งŽ์€ ์ž„ํŽ™ํŠธ๊ฐ€ ์žˆ์„์ง€๋Š” ๋ชจํ˜ธํ•˜๋‹ค. ๋ฌผ๋ก  ์ •์„ฑ์  ๊ฒฐ๊ณผ๋Š” ์ข‹์€ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

์ถ”๊ฐ€๋กœ Ablation Study๋กœ IM: Independent MLP, SM: pre-defined instance segmentation model (MaskDINO)์ด๋ฉฐ, ๊ฒฐ๋ก ์ ์œผ๋กœ๋Š” LaMa๋ฅผ ์‚ฌ์šฉํ•œ ๋ชจ๋ธ์ด ๊ฐ€์žฅ ์„ฑ๋Šฅ์ด ๋†’์•˜๋‹ค.

๋ฐ˜์‘ํ˜•
์ €์ž‘์žํ‘œ์‹œ ๋น„์˜๋ฆฌ ๋ณ€๊ฒฝ๊ธˆ์ง€

'Study: Artificial Intelligence(AI) > AI: 3D Vision' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

[๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] RobustNeRF: NeRFwithRealWorld + Regularization - Ignoring Distractors with Robust Losses(CVPR 2023 Highlights)  (0) 2024.11.18
[๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] HumanGaussian: Text-Driven 3D Human Generation with Gaussian Splatting (CVPR 2024)  (0) 2024.11.17
[๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] SF-NeRF: - Semantic-aware Occlusion Filtering Neural Radiance Fields in the Wild (CVPR 2023)  (0) 2024.11.14
[๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] ActiveSplat: Gaussian map + Voronoi graph - High-Fidelity Scene Reconstruction through Active Gaussian Splatting (Arxiv 2024)  (0) 2024.11.14
[๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] NeRF in the Wild(NeRF-W): NeRFwithRealWorld + Embedding - Neural Radiance Fields for Unconstrained Photo Collections (CVPR 2021 Oral)  (1) 2024.11.14
    'Study: Artificial Intelligence(AI)/AI: 3D Vision' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
    • [๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] RobustNeRF: NeRFwithRealWorld + Regularization - Ignoring Distractors with Robust Losses(CVPR 2023 Highlights)
    • [๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] HumanGaussian: Text-Driven 3D Human Generation with Gaussian Splatting (CVPR 2024)
    • [๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] SF-NeRF: - Semantic-aware Occlusion Filtering Neural Radiance Fields in the Wild (CVPR 2023)
    • [๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] ActiveSplat: Gaussian map + Voronoi graph - High-Fidelity Scene Reconstruction through Active Gaussian Splatting (Arxiv 2024)
    DrawingProcess
    DrawingProcess
    ๊ณผ์ •์„ ๊ทธ๋ฆฌ์ž!

    ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”