DrawingProcess
๋“œํ”„ DrawingProcess
DrawingProcess
์ „์ฒด ๋ฐฉ๋ฌธ์ž
์˜ค๋Š˜
์–ด์ œ
ยซ   2025/07   ยป
์ผ ์›” ํ™” ์ˆ˜ ๋ชฉ ๊ธˆ ํ† 
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
  • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ (969)
    • Profile & Branding (25)
      • Career (18)
    • IT Trends (254)
      • Conference, Faire (Experien.. (31)
      • News (187)
      • Youtube (19)
      • TED (8)
      • Web Page (2)
      • IT: Etc... (6)
    • Contents (98)
      • Book (67)
      • Lecture (31)
    • Project Process (94)
      • Ideation (0)
      • Study Report (34)
      • Challenge & Award (22)
      • 1Day1Process (5)
      • Making (5)
      • KRC-FTC (Team TC(5031, 5048.. (10)
      • GCP (GlobalCitizenProject) (15)
    • Study: ComputerScience(CS) (72)
      • CS: Basic (9)
      • CS: Database(SQL) (5)
      • CS: Network (14)
      • CS: OperatingSystem (3)
      • CS: Linux (39)
      • CS: Etc... (2)
    • Study: Software(SW) (95)
      • SW: Language (29)
      • SW: Algorithms (1)
      • SW: DataStructure & DesignP.. (1)
      • SW: Opensource (15)
      • SW: Error Bug Fix (43)
      • SW: Etc... (6)
    • Study: Artificial Intellige.. (149)
      • AI: Research (1)
      • AI: 2D Vision(Det, Seg, Tra.. (35)
      • AI: 3D Vision (70)
      • AI: MultiModal (3)
      • AI: SLAM (0)
      • AI: Light Weight(LW) (3)
      • AI: Data Pipeline (7)
      • AI: Machine Learning(ML) (1)
    • Study: Robotics(Robot) (33)
      • Robot: ROS(Robot Operating .. (9)
      • Robot: Positioning (8)
      • Robot: Planning & Control (7)
    • Study: DeveloperTools(DevTo.. (83)
      • DevTool: Git (12)
      • DevTool: CMake (13)
      • DevTool: NoSQL(Elastic, Mon.. (25)
      • DevTool: Container (17)
      • DevTool: IDE (11)
      • DevTool: CloudComputing (4)
    • ์ธ์ƒ์„ ์‚ด๋ฉด์„œ (65)
      • ๋‚˜์˜ ์ทจ๋ฏธ๋“ค (7)
      • ๋‚˜์˜ ์ƒ๊ฐ๋“ค (42)
      • ์—ฌํ–‰์„ ๋– ๋‚˜์ž~ (10)
      • ๋ถ„๊ธฐ๋ณ„ ํšŒ๊ณ  (6)

๊ฐœ๋ฐœ์ž ๋ช…์–ธ

โ€œ ๋งค์ฃผ ๋ชฉ์š”์ผ๋งˆ๋‹ค ๋‹น์‹ ์ด ํ•ญ์ƒ ํ•˜๋˜๋Œ€๋กœ ์‹ ๋ฐœ๋ˆ์„ ๋ฌถ์œผ๋ฉด ์‹ ๋ฐœ์ด ํญ๋ฐœํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•ด๋ณด๋ผ.
์ปดํ“จํ„ฐ๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ๋Š” ์ด๋Ÿฐ ์ผ์ด ํ•ญ์ƒ ์ผ์–ด๋‚˜๋Š”๋ฐ๋„ ์•„๋ฌด๋„ ๋ถˆํ‰ํ•  ์ƒ๊ฐ์„ ์•ˆ ํ•œ๋‹ค. โ€

- Jef Raskin

๋งฅ์˜ ์•„๋ฒ„์ง€ - ์• ํ”Œ์ปดํ“จํ„ฐ์˜ ๋งคํ‚จํ† ์‹œ ํ”„๋กœ์ ํŠธ๋ฅผ ์ฃผ๋„

์ธ๊ธฐ ๊ธ€

์ตœ๊ทผ ๊ธ€

์ตœ๊ทผ ๋Œ“๊ธ€

ํ‹ฐ์Šคํ† ๋ฆฌ

hELLO ยท Designed By ์ •์ƒ์šฐ.
DrawingProcess

๋“œํ”„ DrawingProcess

Study: Artificial Intelligence(AI)/AI: 2D Vision(Det, Seg, Trac)

[์„ธ๋ฏธ๋‚˜] Image-guided Depth Completion: A Non-linear Filters, Convolutions, and Transformer(AMI Lab POSTECH)

2024. 7. 16. 13:21
๋ฐ˜์‘ํ˜•
๐Ÿ’ก ๋ณธ ๋ฌธ์„œ๋Š” 'Image-guided Depth Completion: A Non-linear Filters, Convolutions, and Transformer' ์˜์ƒ์„ ๋ฐ”ํƒ•์œผ๋กœ ์ž‘์„ฑํ•œ ๊ธ€์ด๋‹ˆ ์ฐธ๊ณ ํ•˜์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.

1. Problem

Problem

  • Existing Commercial depth sensors: Good
    • Microsoft Kinect
    • Intel RealSense
  • Depths points within the same scanning line of LiDAR sensors: Dense
  • Still has limitation
    • sensor noise
    • challenging conditions: transparent, shining dark surfaces
    • limited number of scanning lines of LiDAR sensors

How to Solve the Problem? Depth completion

  • Spatially propagating the sparse measurements throughout the whole image to get a dense depth prediction
  • Goal: completing and reconstructing the whole depth map from sparse depth measurements & corresponding RGB image
  • given sparse depth could be highly sparse due to noise or even no measurement being returned from the depth sensor
  • it requires depth completion methods to be capable of
    • detecting depth outliers by measuring the spatial relationship between pixels in both local and global perspectives
    • fusing valid depth values from close or even extremely far distance points

local

Non-linear filter: Bilateral filter

  • Goal: Image Smoothing
  • Split an image into:
    • large-scale features: structure
    • small-scale features: texture

1.1 

1.1.1 

 

์ฐธ๊ณ 

  • [Youtube] Image-guided Depth Completion: A Non-linear Filters, Convolutions, and Transformer [Kim Kyeongseon]: https://www.youtube.com/watch?v=-tR5rYfin48
๋ฐ˜์‘ํ˜•
์ €์ž‘์žํ‘œ์‹œ ๋น„์˜๋ฆฌ ๋ณ€๊ฒฝ๊ธˆ์ง€ (์ƒˆ์ฐฝ์—ด๋ฆผ)

'Study: Artificial Intelligence(AI) > AI: 2D Vision(Det, Seg, Trac)' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

[Gen AI] DreamBooth ์‚ฌ์šฉํ•ด๋ณด๊ธฐ - DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation  (0) 2024.07.28
[๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] InternImage: DCN + Vision Foundation Models - Exploring Large-Scale Vision Foundation Models with Deformable Convolutions  (15) 2024.07.25
[Gen AI] ์ƒ์„ฑํ˜• ๋ชจ๋ธ ๋ฐ ์„œ๋น„์Šค ์ •๋ฆฌ  (0) 2024.07.11
[๋…ผ๋ฌธ๋ฆฌ๋ทฐ] VQ-GAN: Code Book - Taming Transformers for High-Resolution Image Synthesis  (0) 2024.07.07
[๋…ผ๋ฌธ๋ฆฌ๋ทฐ] VQ-VAE: Vector Quantized Variational Autoencoder - Neural Discrete Representation Learning  (0) 2024.07.06
    'Study: Artificial Intelligence(AI)/AI: 2D Vision(Det, Seg, Trac)' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
    • [Gen AI] DreamBooth ์‚ฌ์šฉํ•ด๋ณด๊ธฐ - DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation
    • [๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] InternImage: DCN + Vision Foundation Models - Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
    • [Gen AI] ์ƒ์„ฑํ˜• ๋ชจ๋ธ ๋ฐ ์„œ๋น„์Šค ์ •๋ฆฌ
    • [๋…ผ๋ฌธ๋ฆฌ๋ทฐ] VQ-GAN: Code Book - Taming Transformers for High-Resolution Image Synthesis
    DrawingProcess
    DrawingProcess
    ๊ณผ์ •์„ ๊ทธ๋ฆฌ์ž!

    ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”