๋ฐ์ํ
๐ก ๋ณธ ๋ฌธ์๋ 'LiDAR2Map: In Defense of LiDAR-Based Semantic Map Construction Using Online Camera Distillation' ๋ ผ๋ฌธ์ ์ ๋ฆฌํด๋์ ๊ธ์ ๋๋ค.
ํด๋น ๋ ผ๋ฌธ์ CLIP ๊ฐ์ ๋ฉํฐ๋ชจ๋ฌ ๋ชจ๋ธ์ language embedding์ NeRF ์์ ์ง์ด๋ฃ์ด NeRF๋ฅผ Multi Modal๋ก ํ์ฅ ๊ฐ๋ฅ์ฑ์ ๋ณด์ฌ์ค ๋ ผ๋ฌธ์ด๋ ์ฐธ๊ณ ํ์๊ธฐ ๋ฐ๋๋๋ค.
- Paper: https://openaccess.thecvf.com/content/CVPR2023/papers/Wang_LiDAR2Map_In_Defense_of_LiDAR-Based_Semantic_Map_Construction_Using_Online_CVPR_2023_paper.pdf
- Github: https://github.com/songw-zju/LiDAR2Map
- Youtube: https://www.youtube.com/watch?v=nr25xFZbx8U
Contribution
- BEV Feature Pyramid Decoder (BEV-FPD)
- LiDAR-based network: an online Camera-to-LiDAR distillation scheme.
- mainly use LiDAR data and only extract image features as auxiliary network during training.
- Feature Distill + Logit Distill
LiDAR2Map Framework
1. BEV Feature Pyramid Decoder (BEV-FPD)
2. Position-Guided Feature Fusion Module (PGF2M)
we take advantage of the multi-scale BEV features {F˜BEV i } N i=1 from BEV-FPD for the feature-level distillation.
+ feature fusion module
- knowledge distilation
- ์นด๋ฉ๋ผ ์ด๋ฏธ์ง์์ ์ป์ ํ๋ถํ ์๋ฏธ ์ ๋ณด๋ฅผ ํ์ฉํ์ฌ LiDAR ๋ชจ๋ธ์ ์ฑ๋ฅ์ ํฅ์์ํค๋ ๋ฐ ์ฌ์ฉ
- ์ค์ test์๋ Lidar ์ํ์ค๋ง ์คํ๋๋ ์๋์ ์ผ๋ก๋ ์ด๋
๋ฐ์ํ